Equivalences of the form Σ^𝑉⁢𝑋≃Σ^𝑊⁢𝑋 in equivariant stable hom*otopy theory (2024)

Table of Contents
1. Introduction 1.1. Background 1.2. Summary Acknowledgements 2. An R⁢O⁢(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded J𝐽Jitalic_J-hom*omorphism 2.1. Preliminaries 2.2. Constructing the J𝐽Jitalic_J-hom*omorphism 3. The equivariant Atiyah–Hirzebruch spectral sequence 3.1. A technical lemma 3.2. Periodicities and differentials in the equivariant AHSS 4. Equivariant tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self maps and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements 4.1. Equivariant cobordism and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements 4.2. Vector bundles and K𝐾Kitalic_K-theory 4.3. Character theory 4.4. ℱℱ\mathcal{F}caligraphic_F-nilpotence 4.5. Existence of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements 5. General and local equivalences ΣV⁢X≃ΣW⁢Xsimilar-to-or-equalssuperscriptΣ𝑉𝑋superscriptΣ𝑊𝑋\Sigma^{V}X\simeq\Sigma^{W}Xroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT italic_X ≃ roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT italic_X 5.1. Stable equivalences of representation spheres 5.2. General periodicities 5.3. The equivariant Adams conjecture 5.4. Localization arguments 6. Examples 6.1. Computing with equivariant K𝐾Kitalic_K-theory 6.2. Example: cyclic groups 6.3. Example: the symmetric group on 3333 letters 6.4. The dihedral group of order 8888 6.5. Example: the nonabelian group of order 21212121 6.6. Example: the quaternion group of order 8888 6.7. Example: the binary octahedral group References

William Balderrama

Abstract.

We study equivalences of the form ΣVXΣWXsimilar-to-or-equalssuperscriptΣ𝑉𝑋superscriptΣ𝑊𝑋\Sigma^{V}X\simeq\Sigma^{W}Xroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT italic_X ≃ roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT italic_X, where G𝐺Gitalic_G is a compact Lie group, X𝑋Xitalic_X is a G𝐺Gitalic_G-spectrum, and V𝑉Vitalic_V and W𝑊Witalic_W are G𝐺Gitalic_G-representations. These equivalences encode a periodicity phenomenon in G𝐺Gitalic_G-equivariant hom*otopy theory which generalizes the classical James periodicity for G=C2𝐺subscript𝐶2G=C_{2}italic_G = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

When X=C(aλ)𝑋𝐶subscript𝑎𝜆X=C(a_{\lambda})italic_X = italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) is the cofiber of an Euler class, we construct an RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded J𝐽Jitalic_J-hom*omorphism J:πλKOGπGC(aλ)×:𝐽subscript𝜋𝜆𝐾subscript𝑂𝐺superscriptsubscript𝜋𝐺𝐶superscriptsubscript𝑎𝜆J\colon\pi_{\lambda}KO_{G}\rightarrow\pi_{\star}^{G}C(a_{\lambda})^{\times}italic_J : italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT which gives control over these periodicities. It also produces infinite periodic families in the G𝐺Gitalic_G-equivariant stable stems. We illustrate this with several explicit examples.

More generally, our work gives information about RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded units in equivariant stable cohom*otopy rings. We apply this to construct universal periodicities and differentials in the G𝐺Gitalic_G-hom*otopy fixed point spectral sequence, and other equivariant Atiyah–Hirzebruch spectral sequences.

2020 Mathematics Subject Classification:

19L20, 19L47, 55P42, 55Q91.

1. Introduction

1.1. Background

In [Bre67, Bre68], Bredon introduced the C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant stable stems. In modern notation, these are the groups πSC2subscript𝜋subscript𝑆subscript𝐶2\pi_{\star}S_{C_{2}}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT comprising the RO(C2)𝑅𝑂subscript𝐶2RO(C_{2})italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )-graded coefficient ring of the C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant sphere spectrum. At the same time, he introduced groups that, in modern notation, may be identified as the RO(C2)𝑅𝑂subscript𝐶2RO(C_{2})italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )-graded hom*otopy groups πC2C(aσm)superscriptsubscript𝜋subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚\pi_{\star}^{C_{2}}C(a_{\sigma}^{m})italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) of the cofiber of the Euler class aσm:SC2mσSC20:superscriptsubscript𝑎𝜎𝑚subscriptsuperscript𝑆𝑚𝜎subscript𝐶2subscriptsuperscript𝑆0subscript𝐶2a_{\sigma}^{m}\colon S^{-m\sigma}_{C_{2}}\rightarrow S^{0}_{C_{2}}italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT : italic_S start_POSTSUPERSCRIPT - italic_m italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

In addition to fitting these groups into the evident long exact sequences, Bredon observed that they satisfy a certain periodicity:

π+2γ(m)C2C(aσm+1)π+2γ(m)σC2C(aσm+1),superscriptsubscript𝜋absentsuperscript2𝛾𝑚subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1superscriptsubscript𝜋absentsuperscript2𝛾𝑚𝜎subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1\pi_{\star+2^{\gamma(m)}}^{C_{2}}C(a_{\sigma}^{m+1})\cong\pi_{\star+2^{\gamma(%m)}\sigma}^{C_{2}}C(a_{\sigma}^{m+1}),italic_π start_POSTSUBSCRIPT ⋆ + 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) ≅ italic_π start_POSTSUBSCRIPT ⋆ + 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) ,(1)

where γ(m)=#{0<km:k0,1,2,4(mod8)}𝛾𝑚#conditional-set0𝑘𝑚𝑘012annotated4pmod8\gamma(m)=\#\{0<k\leq m:k\equiv 0,1,2,4\pmod{8}\}italic_γ ( italic_m ) = # { 0 < italic_k ≤ italic_m : italic_k ≡ 0 , 1 , 2 , 4 start_MODIFIER ( roman_mod start_ARG 8 end_ARG ) end_MODIFIER }.

This periodicity was further studied by Araki [Ara79].The C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-spectrum C(aσm+1)𝐶superscriptsubscript𝑎𝜎𝑚1C(a_{\sigma}^{m+1})italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) is dual tothe m𝑚mitalic_m-sphere S¯msuperscript¯𝑆𝑚\underline{S}^{m}under¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT with its free antipodal action. The theory of Clifford algebras provides a trivialization of the C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant vector bundle 2γ(m)σ×S¯mS¯msuperscript2𝛾𝑚𝜎superscript¯𝑆𝑚superscript¯𝑆𝑚2^{\gamma(m)}\sigma\times\underline{S}^{m}\rightarrow\underline{S}^{m}2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT italic_σ × under¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT → under¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, and Araki used this to produce and study invertible elements

ωmπ2γ(m)(1σ)C2C(aσm+1)×.subscript𝜔𝑚superscriptsubscript𝜋superscript2𝛾𝑚1𝜎subscript𝐶2𝐶superscriptsuperscriptsubscript𝑎𝜎𝑚1\omega_{m}\in\pi_{2^{\gamma(m)}(1-\sigma)}^{C_{2}}C(a_{\sigma}^{m+1})^{\times}.italic_ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT ( 1 - italic_σ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT .(2)

Additional properties of these were established by Araki and Iriye in [AI82], where they were applied to the computation of C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant stable stems.

As already observed by Bredon, the groups πC2C(aσm+1)superscriptsubscript𝜋subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1\pi_{\star}^{C_{2}}C(a_{\sigma}^{m+1})italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) can be identified as nonequivariant stable hom*otopy groups of real stunted projective spaces. From this perspective, Eq.1 is a consequence of James periodicity [Jam58], as also noted by Landweber [Lan68]. In [BS20], Behrens and Shah used the Adams isomorphism and James periodicity directly to produce invertible elements of the form Eq.2. Their work emphasizes the interaction with the C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant Adams spectral sequence, constructing these elements to lift powers of the orientation class uσπ1σH𝔽2C2subscript𝑢𝜎subscript𝜋1𝜎𝐻superscriptsubscript𝔽2subscript𝐶2u_{\sigma}\in\pi_{1-\sigma}H\mathbb{F}_{2}^{C_{2}}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT italic_H blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

Our goal in this paper is to put these results in the context of a more general periodicity phenomenon in equivariant stable hom*otopy theory, and give applications.

1.2. Summary

The starting point of our investigation is a reinterpretation and generalization of these classical results in terms of the J𝐽Jitalic_J-hom*omorphism. Classically, the stable J𝐽Jitalic_J-hom*omorphism for a space Z𝑍Zitalic_Z is a hom*omorphism

KO1(Z)π0D(Σ+Z)×,𝐾superscript𝑂1𝑍subscript𝜋0𝐷superscriptsubscriptsuperscriptΣ𝑍KO^{-1}(Z)\rightarrow\pi_{0}D(\Sigma^{\infty}_{+}Z)^{\times},italic_K italic_O start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT ,(3)

where KO1(Z)𝐾superscript𝑂1𝑍KO^{-1}(Z)italic_K italic_O start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) is the K𝐾Kitalic_K-theory of real vector bundles over the suspension of Z𝑍Zitalic_Z and π0D(Σ+Z)×subscript𝜋0𝐷superscriptsubscriptsuperscriptΣ𝑍\pi_{0}D(\Sigma^{\infty}_{+}Z)^{\times}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT is the group of units in the stable cohom*otopy ring of Z𝑍Zitalic_Z. The J𝐽Jitalic_J-hom*omorphism was originally introduced by G.W.Whitehead [Whi42], and the construction works just as well equivariantly, as has been studied by several people going back to Segal [Seg71].

We introduce the following refinement of the equivariant J𝐽Jitalic_J-hom*omorphism. Fix a compact Lie group G𝐺Gitalic_G and compact G𝐺Gitalic_G-space Z𝑍Zitalic_Z, with unreduced suspension SZ𝑆𝑍SZitalic_S italic_Z.

1.2.1 Theorem (Theorem2.2.1).

The equivariant J𝐽Jitalic_J-hom*omorphism refines to a hom*omorphism

J:KO~(SZ)G0πGD(Σ+Z)×,J\colon\widetilde{KO}{}_{G}^{0}(SZ)\rightarrow\pi_{\star}^{G}D(\Sigma^{\infty}%_{+}Z)^{\times},italic_J : over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT ,

defined up to signs, of the following signature: if ξKO~(SZ)G0\xi\in\widetilde{KO}{}_{G}^{0}(SZ)italic_ξ ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) restricts along the inclusion S0SZsuperscript𝑆0𝑆𝑍S^{0}\rightarrow SZitalic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S italic_Z to αKO~(S0)G0RO(G)\alpha\in\widetilde{KO}{}_{G}^{0}(S^{0})\cong RO(G)italic_α ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) ≅ italic_R italic_O ( italic_G ), then J(ξ)παGD(Σ+Z)𝐽𝜉superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣ𝑍J(\xi)\in\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_J ( italic_ξ ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ).\triangleleft

This refines the classical equivariant J𝐽Jitalic_J-hom*omorphism as in Eq.3 in the sense that the latter is obtained by restricting along the canonical map SZΣ(Z+)𝑆𝑍Σsubscript𝑍SZ\rightarrow\Sigma(Z_{+})italic_S italic_Z → roman_Σ ( italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ). By “defined up to signs” we mean that J𝐽Jitalic_J takes values in orbits for the action by the subgroup of orthogonal units in (π0SG)×superscriptsubscript𝜋0subscript𝑆𝐺(\pi_{0}S_{G})^{\times}( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT, i.e.those obtained by compactifying an automorphism of G𝐺Gitalic_G-representations. See 2.1.1 for further discussion.

1.2.2 Example.

Let Z=S(λ)𝑍𝑆𝜆Z=S(\lambda)italic_Z = italic_S ( italic_λ ) be the unit sphere in a G𝐺Gitalic_G-representation λ𝜆\lambdaitalic_λ. In this case the cofiber sequence S(λ)+S0Sλ𝑆subscript𝜆superscript𝑆0superscript𝑆𝜆S(\lambda)_{+}\rightarrow S^{0}\rightarrow S^{\lambda}italic_S ( italic_λ ) start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT yields equivalences

SZSλ,D(Σ+Z)C(aλ),formulae-sequencesimilar-to-or-equals𝑆𝑍superscript𝑆𝜆similar-to-or-equals𝐷subscriptsuperscriptΣ𝑍𝐶subscript𝑎𝜆SZ\simeq S^{\lambda},\qquad D(\Sigma^{\infty}_{+}Z)\simeq C(a_{\lambda}),italic_S italic_Z ≃ italic_S start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT , italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) ≃ italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) ,

where aλπλSGsubscript𝑎𝜆subscript𝜋𝜆subscript𝑆𝐺a_{\lambda}\in\pi_{-\lambda}S_{G}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT - italic_λ end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is the Euler class of λ𝜆\lambdaitalic_λ, so our J𝐽Jitalic_J-hom*omorphism takes the form

J:πλKOGπGC(aλ)×,:𝐽subscript𝜋𝜆𝐾subscript𝑂𝐺superscriptsubscript𝜋𝐺𝐶superscriptsubscript𝑎𝜆J\colon\pi_{\lambda}KO_{G}\rightarrow\pi_{\star}^{G}C(a_{\lambda})^{\times},italic_J : italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT ,

where if ξπλKOG𝜉subscript𝜋𝜆𝐾subscript𝑂𝐺\xi\in\pi_{\lambda}KO_{G}italic_ξ ∈ italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT then

|J(ξ)|=αwhenaλξ=απ0KOG=RO(G)formulae-sequence𝐽𝜉𝛼whensubscript𝑎𝜆𝜉𝛼subscript𝜋0𝐾subscript𝑂𝐺𝑅𝑂𝐺|J(\xi)|=\alpha\qquad\text{when}\qquad a_{\lambda}\xi=\alpha\in\pi_{0}KO_{G}=%RO(G)| italic_J ( italic_ξ ) | = italic_α when italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_ξ = italic_α ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = italic_R italic_O ( italic_G )
1.2.3 Example.

It follows from the structure of π0KOC2C(aσm+1)KO0(Pm)tensor-productsubscript𝜋0𝐾subscript𝑂subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1𝐾superscript𝑂0superscript𝑃𝑚\pi_{0}KO_{C_{2}}\otimes C(a_{\sigma}^{m+1})\cong KO^{0}(\mathbb{R}P^{m})italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) ≅ italic_K italic_O start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( blackboard_R italic_P start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) [Ada62] that

Im(aσm+1:π(m+1)σKOC2RO(C2))={2γ(m)(1σ)},Im:superscriptsubscript𝑎𝜎𝑚1subscript𝜋𝑚1𝜎𝐾subscript𝑂subscript𝐶2𝑅𝑂subscript𝐶2superscript2𝛾𝑚1𝜎\operatorname{Im}(a_{\sigma}^{m+1}\colon\pi_{(m+1)\sigma}KO_{C_{2}}\rightarrowRO%(C_{2}))=\mathbb{Z}\{2^{\gamma(m)}(1-\sigma)\},roman_Im ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT : italic_π start_POSTSUBSCRIPT ( italic_m + 1 ) italic_σ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) = blackboard_Z { 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT ( 1 - italic_σ ) } ,

so Theorem1.2.1 encodes the classical James periodicity of Subsection1.1.\triangleleft

1.2.4 Remark.

In general, an invertible element uπαGC(aλ)𝑢superscriptsubscript𝜋𝛼𝐺𝐶subscript𝑎𝜆u\in\pi_{\alpha}^{G}C(a_{\lambda})italic_u ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) gives rise to a secondary periodicity operator

Pu:πG()π+αG(),:subscript𝑃𝑢superscriptsubscript𝜋𝐺superscriptsubscript𝜋absent𝛼𝐺P_{u}\colon\pi_{\star}^{G}({-})\rightharpoonup\pi_{\star+\alpha}^{G}({-}),italic_P start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( - ) ⇀ italic_π start_POSTSUBSCRIPT ⋆ + italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( - ) ,

defined on the kernel of aλsubscript𝑎𝜆a_{\lambda}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT and defined modulo the projection (u)πα+λ1SG𝑢subscript𝜋𝛼𝜆1subscript𝑆𝐺\partial(u)\in\pi_{\alpha+\lambda-1}S_{G}∂ ( italic_u ) ∈ italic_π start_POSTSUBSCRIPT italic_α + italic_λ - 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT of u𝑢uitalic_u onto the top cell of C(aλ)𝐶subscript𝑎𝜆C(a_{\lambda})italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ). These operators are periodic in the sense that if aλx=0subscript𝑎𝜆𝑥0a_{\lambda}x=0italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_x = 0 then xPu1(Pu(x))𝑥subscript𝑃superscript𝑢1subscript𝑃𝑢𝑥x\in P_{u^{-1}}(P_{u}(x))italic_x ∈ italic_P start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_P start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( italic_x ) ). Thus 1.2.2 implies that the equivariant K𝐾Kitalic_K-theory of representation spheres parametrizes certain nontrivial periodicities defined on Euler-torsion in G𝐺Gitalic_G-equivariant stable hom*otopy theory.\triangleleft

As 1.2.4 suggests, Theorem1.2.1 can be used to produce infinite periodic families in the RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded equivariant stable stems.

1.2.5 Example (Subsection6.6).

Let \mathbb{H}blackboard_H denote the tautological representation of the quaternion group Q8𝒮p(1)subscript𝑄8𝒮p1Q_{8}\subset\mathcal{S}\mathrm{p}(1)italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ⊂ caligraphic_S roman_p ( 1 ) of order 8888. If we define

p(n)={2n,neven,2n+1,nodd,𝑝𝑛cases2𝑛𝑛even2𝑛1𝑛oddp(n)=\begin{cases}2n,&n\text{ even},\\2n+1,&n\text{ odd},\end{cases}italic_p ( italic_n ) = { start_ROW start_CELL 2 italic_n , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL 2 italic_n + 1 , end_CELL start_CELL italic_n odd , end_CELL end_ROW

then 2p(n)(4)=an+1bn+1superscript2𝑝𝑛4superscriptsubscript𝑎𝑛1subscript𝑏𝑛12^{p(n)}(4-\mathbb{H})=a_{\mathbb{H}}^{n+1}\cdot b_{n+1}2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT ( 4 - blackboard_H ) = italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT ⋅ italic_b start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT for some bn+1π(n+1)KOQ8subscript𝑏𝑛1subscript𝜋𝑛1𝐾subscript𝑂subscript𝑄8b_{n+1}\in\pi_{(n+1)\mathbb{H}}KO_{Q_{8}}italic_b start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT ( italic_n + 1 ) blackboard_H end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT which lifts a generator of π4(n+1)KOsubscript𝜋4𝑛1𝐾𝑂\pi_{4(n+1)}KOitalic_π start_POSTSUBSCRIPT 4 ( italic_n + 1 ) end_POSTSUBSCRIPT italic_K italic_O when n𝑛nitalic_n is even and 4444 times a generator when n𝑛nitalic_n is odd. From this one obtains invertible elements

u2p(n)=J(bn+1)π2p(n)(4)Q8C(an+1).subscript𝑢superscript2𝑝𝑛𝐽subscript𝑏𝑛1superscriptsubscript𝜋superscript2𝑝𝑛4subscript𝑄8𝐶superscriptsubscript𝑎𝑛1u_{2^{p(n)}\mathbb{H}}=J(b_{n+1})\in\pi_{2^{p(n)}(4-\mathbb{H})}^{Q_{8}}C(a_{%\mathbb{H}}^{n+1}).italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT blackboard_H end_POSTSUBSCRIPT = italic_J ( italic_b start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT ( 4 - blackboard_H ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT ) .

By taking powers and projecting onto the top cell of C(an+1)𝐶superscriptsubscript𝑎𝑛1C(a_{\mathbb{H}}^{n+1})italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT ), this gives for each n𝑛nitalic_n the infinite periodic family

(u2p(n)k)π2p(n)k(4)+(n+1)1SQ8,superscriptsubscript𝑢superscript2𝑝𝑛𝑘subscript𝜋superscript2𝑝𝑛𝑘4𝑛11subscript𝑆subscript𝑄8\partial(u_{2^{p(n)}\mathbb{H}}^{k})\in\pi_{2^{p(n)}k(4-\mathbb{H})+(n+1)%\mathbb{H}-1}S_{Q_{8}},∂ ( italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT italic_k ( 4 - blackboard_H ) + ( italic_n + 1 ) blackboard_H - 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,

all nonzero for k0𝑘0k\neq 0italic_k ≠ 0, satisfying

reseQ8((u2p(n)k))={kj4n+3,neven,k4j4n+3,nodd,subscriptsuperscriptressubscript𝑄8𝑒superscriptsubscript𝑢superscript2𝑝𝑛𝑘cases𝑘subscript𝑗4𝑛3𝑛even𝑘4subscript𝑗4𝑛3𝑛odd\operatorname{res}^{Q_{8}}_{e}(\partial(u_{2^{p(n)}}^{k}))=\begin{cases}k\cdotj%_{4n+3},&n\text{ even},\\k\cdot 4j_{4n+3},&n\text{ odd},\end{cases}roman_res start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ) = { start_ROW start_CELL italic_k ⋅ italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL italic_k ⋅ 4 italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n odd , end_CELL end_ROW

where jnπnSsubscript𝑗𝑛subscript𝜋𝑛𝑆j_{n}\in\pi_{n}Sitalic_j start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_S is a generator of the image of J𝐽Jitalic_J in this degree.\triangleleft

In Section3, we apply Theorem1.2.1 to construct universal periodicities and differentials in equivariant Atiyah–Hirzebruch spectral sequences. We refer the reader there for the general situation and just state here a special case.

Given a finite group G𝐺Gitalic_G and G𝐺Gitalic_G-ring spectrum R𝑅Ritalic_R, there is a hom*otopy fixed point spectral sequence

E2(R)=H(G;πeR)πGRhsubscript𝐸2𝑅superscript𝐻𝐺superscriptsubscript𝜋𝑒𝑅superscriptsubscript𝜋absent𝐺superscriptsubscript𝑅E_{2}(R)=H^{\ast}(G;\pi_{\star}^{e}R)\Rightarrow\pi_{\star-\ast}^{G}R_{h}^{\wedge}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_R ) = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ; italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R ) ⇒ italic_π start_POSTSUBSCRIPT ⋆ - ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT

computing the RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded hom*otopy of the Borel completion Rh=F(EG+,R)superscriptsubscript𝑅𝐹𝐸subscript𝐺𝑅R_{h}^{\wedge}=F(EG_{+},R)italic_R start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT = italic_F ( italic_E italic_G start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_R ). This spectral sequence exhibits periodic behavior: there are invertible elements uαπ|α|αeRπ0eRsubscript𝑢𝛼superscriptsubscript𝜋𝛼𝛼𝑒𝑅superscriptsubscript𝜋0𝑒𝑅u_{\alpha}\in\pi_{|\alpha|-\alpha}^{e}R\cong\pi_{0}^{e}Ritalic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT | italic_α | - italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R ≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R for each αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), canonical up to a sign, allowing one to identify

E2(R)=H(G;πeR[uλ±1:λirreducibleG-representation]).E_{2}(R)=H^{\ast}(G;\pi_{\ast}^{e}R[u_{\lambda}^{\pm 1}:\lambda\text{ %irreducible $G$-representation}]).italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_R ) = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_G ; italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R [ italic_u start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT : italic_λ irreducible italic_G -representation ] ) .

Here, gG𝑔𝐺g\in Gitalic_g ∈ italic_G acts on uλsubscript𝑢𝜆u_{\lambda}italic_u start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT by ±1plus-or-minus1\pm 1± 1 according to whether the action of g𝑔gitalic_g on λ𝜆\lambdaitalic_λ is oriented. Theorem1.2.1 allows us to construct universal differentials on these classes. If [G][G]{I1}[G]{I2}delimited-[]𝐺delimited-[]𝐺subscript𝐼1delimited-[]𝐺subscript𝐼2\mathbb{Z}\leftarrow\mathbb{Z}[G]\leftarrow\mathbb{Z}[G]\{I_{1}\}\leftarrow%\mathbb{Z}[G]\{I_{2}\}\leftarrow\cdotsblackboard_Z ← blackboard_Z [ italic_G ] ← blackboard_Z [ italic_G ] { italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } ← blackboard_Z [ italic_G ] { italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } ← ⋯ is the free [G]delimited-[]𝐺\mathbb{Z}[G]blackboard_Z [ italic_G ]-module resolution associated to a cell structure on EG𝐸𝐺EGitalic_E italic_G, then an E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-page for the hom*otopy fixed point spectral sequence is given by

E1α,f(R)=π|α|+feR×IfπαGRh.superscriptsubscript𝐸1𝛼𝑓𝑅superscriptsubscript𝜋𝛼𝑓𝑒superscript𝑅absentsubscript𝐼𝑓superscriptsubscript𝜋𝛼𝐺superscriptsubscript𝑅E_{1}^{\alpha,f}(R)=\pi_{|\alpha|+f}^{e}R^{\times I_{f}}\Rightarrow\pi_{\alpha%}^{G}R_{h}^{\wedge}.italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , italic_f end_POSTSUPERSCRIPT ( italic_R ) = italic_π start_POSTSUBSCRIPT | italic_α | + italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ⇒ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT .

In the case R=KOG𝑅𝐾subscript𝑂𝐺R=KO_{G}italic_R = italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT and in integer degrees, this is the classical Atiyah–Hirzebruch spectral sequence for KOBG𝐾superscript𝑂𝐵𝐺KO^{\ast}BGitalic_K italic_O start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_B italic_G, and the classical J𝐽Jitalic_J-hom*omorphism defines a map

J~:E10,f(KOG)=πfKO×Ifπf1S×If=E11,f(SG).:~𝐽superscriptsubscript𝐸10𝑓𝐾subscript𝑂𝐺subscript𝜋𝑓𝐾superscript𝑂absentsubscript𝐼𝑓subscript𝜋𝑓1superscript𝑆absentsubscript𝐼𝑓superscriptsubscript𝐸11𝑓subscript𝑆𝐺\tilde{J}\colon E_{1}^{0,f}(KO_{G})=\pi_{f}KO^{\times I_{f}}\rightarrow\pi_{f-%1}S^{\times I_{f}}=E_{1}^{-1,f}(S_{G}).over~ start_ARG italic_J end_ARG : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , italic_f end_POSTSUPERSCRIPT ( italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) = italic_π start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_K italic_O start_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT → italic_π start_POSTSUBSCRIPT italic_f - 1 end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 , italic_f end_POSTSUPERSCRIPT ( italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) .

Given a 00-dimensional virtual G𝐺Gitalic_G-representation α𝛼\alphaitalic_α, set tα=uαE1α,0(R)subscript𝑡𝛼subscript𝑢𝛼superscriptsubscript𝐸1𝛼0𝑅t_{\alpha}=u_{-\alpha}\in E_{1}^{\alpha,0}(R)italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT - italic_α end_POSTSUBSCRIPT ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , 0 end_POSTSUPERSCRIPT ( italic_R ).

1.2.6 Theorem (Theorem3.2.1).

Suppose that αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ) is detected in the Atiyah–Hirzebruch spectral sequence for KO0(BG)𝐾superscript𝑂0𝐵𝐺KO^{0}(BG)italic_K italic_O start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_B italic_G ) in positive filtration f𝑓fitalic_f by bE10,f(KO)𝑏superscriptsubscript𝐸10𝑓𝐾𝑂b\in E_{1}^{0,f}(KO)italic_b ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , italic_f end_POSTSUPERSCRIPT ( italic_K italic_O ). Then tαE1α,0(R)subscript𝑡𝛼superscriptsubscript𝐸1𝛼0𝑅t_{\alpha}\in E_{1}^{\alpha,0}(R)italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , 0 end_POSTSUPERSCRIPT ( italic_R ) survives to the Efsubscript𝐸𝑓E_{f}italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT-page, whereupon

df(tα)=±J~(b)tαsubscript𝑑𝑓subscript𝑡𝛼plus-or-minus~𝐽𝑏subscript𝑡𝛼d_{f}(t_{\alpha})=\pm\tilde{J}(b)t_{\alpha}italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = ± over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT

in Efα1,f(R)superscriptsubscript𝐸𝑓𝛼1𝑓𝑅E_{f}^{\alpha-1,f}(R)italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α - 1 , italic_f end_POSTSUPERSCRIPT ( italic_R ).\triangleleft

1.2.7 Example.

When G=C2𝐺subscript𝐶2G=C_{2}italic_G = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the universal space EC2=S(σ)𝐸subscript𝐶2𝑆𝜎EC_{2}=S(\infty\sigma)italic_E italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_S ( ∞ italic_σ ) admits a cell structure with one free cell in each degree, giving

E1s,f(KOC2)superscriptsubscript𝐸1𝑠𝑓𝐾subscript𝑂subscript𝐶2\displaystyle E_{1}^{s,f}(KO_{C_{2}})italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s , italic_f end_POSTSUPERSCRIPT ( italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )=πs+fKOKOs(BC2),absentsubscript𝜋𝑠𝑓𝐾𝑂𝐾superscript𝑂𝑠𝐵subscript𝐶2\displaystyle=\pi_{s+f}KO\Rightarrow KO^{-s}(BC_{2}),= italic_π start_POSTSUBSCRIPT italic_s + italic_f end_POSTSUBSCRIPT italic_K italic_O ⇒ italic_K italic_O start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT ( italic_B italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ,
E1,(SC2)superscriptsubscript𝐸1subscript𝑆subscript𝐶2\displaystyle E_{1}^{\star,\ast}(S_{C_{2}})italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⋆ , ∗ end_POSTSUPERSCRIPT ( italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )=πS[uσ±1,aσ]π(SC2)h.absentsubscript𝜋𝑆superscriptsubscript𝑢𝜎plus-or-minus1subscript𝑎𝜎subscript𝜋superscriptsubscriptsubscript𝑆subscript𝐶2\displaystyle=\pi_{\ast}S[u_{\sigma}^{\pm 1},a_{\sigma}]\Rightarrow\pi_{\star}%(S_{C_{2}})_{h}^{\wedge}.= italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_S [ italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ] ⇒ italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT ( italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT .

Here, aσsubscript𝑎𝜎a_{\sigma}italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT is the generator of H1(C2;π1σeSC2)/(2)superscript𝐻1subscript𝐶2superscriptsubscript𝜋1𝜎𝑒subscript𝑆subscript𝐶22H^{1}(C_{2};\pi_{1-\sigma}^{e}S_{C_{2}})\cong\mathbb{Z}/(2)italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ≅ blackboard_Z / ( 2 ). Let ρ(n)𝜌𝑛\rho(n)italic_ρ ( italic_n ) denote the n𝑛nitalic_nth Hurwitz–Radon number, i.e.if ν2(n)=4a+bsubscript𝜈2𝑛4𝑎𝑏\nu_{2}(n)=4a+bitalic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_n ) = 4 italic_a + italic_b with 0b30𝑏30\leq b\leq 30 ≤ italic_b ≤ 3 then ρ(n)=8a+2b𝜌𝑛8𝑎superscript2𝑏\rho(n)=8a+2^{b}italic_ρ ( italic_n ) = 8 italic_a + 2 start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT. Then k(1σ)𝑘1𝜎k(1-\sigma)italic_k ( 1 - italic_σ ) is detected in the Atiyah–Hirzebruch spectral sequence for KO0(BC2)𝐾superscript𝑂0𝐵subscript𝐶2KO^{0}(BC_{2})italic_K italic_O start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_B italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) by a generator of πρ(k)KOsubscript𝜋𝜌𝑘𝐾𝑂\pi_{\rho(k)}KOitalic_π start_POSTSUBSCRIPT italic_ρ ( italic_k ) end_POSTSUBSCRIPT italic_K italic_O, and it follows that

dρ(k)(uσk)=jρ(k)1aσρ(k)uσρ(k)uσk,subscript𝑑𝜌𝑘superscriptsubscript𝑢𝜎𝑘subscript𝑗𝜌𝑘1superscriptsubscript𝑎𝜎𝜌𝑘superscriptsubscript𝑢𝜎𝜌𝑘superscriptsubscript𝑢𝜎𝑘d_{\rho(k)}(u_{\sigma}^{k})=j_{\rho(k)-1}\cdot a_{\sigma}^{\rho(k)}u_{\sigma}^%{-\rho(k)}\cdot u_{\sigma}^{k},italic_d start_POSTSUBSCRIPT italic_ρ ( italic_k ) end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) = italic_j start_POSTSUBSCRIPT italic_ρ ( italic_k ) - 1 end_POSTSUBSCRIPT ⋅ italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ρ ( italic_k ) end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_ρ ( italic_k ) end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ,

where jnπnSsubscript𝑗𝑛subscript𝜋𝑛𝑆j_{n}\in\pi_{n}Sitalic_j start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_S is a generator of the image of J𝐽Jitalic_J in degree, with the understanding that j0=±2subscript𝑗0plus-or-minus2j_{0}=\pm 2italic_j start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ± 2. These can also be interpreted as primary differentials in the Atiyah–Hirzebruch spectral sequence for real projective space. This essentially goes back to Adams [Ada62], compare also [AI82, Theorem 3.5] and [BMMS86, Proposition 2.17].\triangleleft

1.2.8 Example.

Theorem1.2.6 only produces universal differentials, which can vanish in a given G𝐺Gitalic_G-ring spectrum. For example, the hom*otopy fixed point spectral sequence for Real bordism M𝑀M\mathbb{R}italic_M blackboard_R takes the form

E1,(M)=πMU[uσ±1,aσ]πC2M.superscriptsubscript𝐸1𝑀subscript𝜋𝑀𝑈superscriptsubscript𝑢𝜎plus-or-minus1subscript𝑎𝜎superscriptsubscript𝜋subscript𝐶2𝑀E_{1}^{\star,\ast}(M\mathbb{R})=\pi_{\ast}MU[u_{\sigma}^{\pm 1},a_{\sigma}]%\Rightarrow\pi_{\star}^{C_{2}}M\mathbb{R}.italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⋆ , ∗ end_POSTSUPERSCRIPT ( italic_M blackboard_R ) = italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_M italic_U [ italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ] ⇒ italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_M blackboard_R .

Theorem1.2.6 implies d1(uσ)=±2aσsubscript𝑑1subscript𝑢𝜎plus-or-minus2subscript𝑎𝜎d_{1}(u_{\sigma})=\pm 2a_{\sigma}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) = ± 2 italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT and d2(uσ2)=ηaσ2subscript𝑑2superscriptsubscript𝑢𝜎2𝜂superscriptsubscript𝑎𝜎2d_{2}(u_{\sigma}^{2})=\eta a_{\sigma}^{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_η italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. As η𝜂\etaitalic_η vanishes in MU𝑀𝑈MUitalic_M italic_U, this implies that uσ2superscriptsubscript𝑢𝜎2u_{\sigma}^{2}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT must survive to (at least) the E3subscript𝐸3E_{3}italic_E start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT-page for M𝑀M\mathbb{R}italic_M blackboard_R. In fact one has

d3(uσ2)=aσ3v¯1,subscript𝑑3superscriptsubscript𝑢𝜎2superscriptsubscript𝑎𝜎3subscript¯𝑣1d_{3}(u_{\sigma}^{2})=a_{\sigma}^{3}\overline{v}_{1},italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ,

where v¯1π1+σMsubscript¯𝑣1subscript𝜋1𝜎𝑀\overline{v}_{1}\in\pi_{1+\sigma}M\mathbb{R}over¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 + italic_σ end_POSTSUBSCRIPT italic_M blackboard_R is detected by uσ1v1superscriptsubscript𝑢𝜎1subscript𝑣1u_{\sigma}^{-1}v_{1}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [HK01]. Given this, one can instead interpret Theorem1.2.6 as saying that aσv¯1π1Msubscript𝑎𝜎subscript¯𝑣1subscript𝜋1𝑀a_{\sigma}\overline{v}_{1}\in\pi_{1}M\mathbb{R}italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT over¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M blackboard_R is the Hurewicz image of a class in π1SC2subscript𝜋1subscript𝑆subscript𝐶2\pi_{1}S_{C_{2}}italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT which is killed by aσ2superscriptsubscript𝑎𝜎2a_{\sigma}^{2}italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and lifts η𝜂\etaitalic_η. The only such class is ηcl+aσ2νC2subscript𝜂clsuperscriptsubscript𝑎𝜎2subscript𝜈subscript𝐶2\eta_{\mathrm{cl}}+a_{\sigma}^{2}\nu_{C_{2}}italic_η start_POSTSUBSCRIPT roman_cl end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, where ηclπ1SC2subscript𝜂clsubscript𝜋1subscript𝑆subscript𝐶2\eta_{\mathrm{cl}}\in\pi_{1}S_{C_{2}}italic_η start_POSTSUBSCRIPT roman_cl end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and νC2π1+2σSC2subscript𝜈subscript𝐶2subscript𝜋12𝜎subscript𝑆subscript𝐶2\nu_{C_{2}}\in\pi_{1+2\sigma}S_{C_{2}}italic_ν start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 + 2 italic_σ end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are the nonequivariant and equivariant complex and quaternionic Hopf maps respectively. As νC2subscript𝜈subscript𝐶2\nu_{C_{2}}italic_ν start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT has trivial Hurewicz image in M𝑀M\mathbb{R}italic_M blackboard_R, this encodes the identity aσv¯1=ηclsubscript𝑎𝜎subscript¯𝑣1subscript𝜂cla_{\sigma}\overline{v}_{1}=\eta_{\mathrm{cl}}italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT over¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT roman_cl end_POSTSUBSCRIPT. Similar considerations apply to higher differentials and other G𝐺Gitalic_G-spectra.\triangleleft

1.2.9 Example.

When G=Q8𝐺subscript𝑄8G=Q_{8}italic_G = italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, as \mathbb{H}blackboard_H is oriented the hom*otopy fixed point spectral sequence restricted to degrees +\ast+\ast\mathbb{H}∗ + ∗ blackboard_H takes the form

E2=H(Q8;πeR)[u±1]π+Q8Rh,subscript𝐸2superscript𝐻subscript𝑄8superscriptsubscript𝜋𝑒𝑅delimited-[]superscriptsubscript𝑢plus-or-minus1superscriptsubscript𝜋absentsubscript𝑄8superscriptsubscript𝑅E_{2}=H^{\ast}(Q_{8};\pi_{\ast}^{e}R)[u_{\mathbb{H}}^{\pm 1}]\Rightarrow\pi_{%\ast+\ast\mathbb{H}}^{Q_{8}}R_{h}^{\wedge},italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R ) [ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] ⇒ italic_π start_POSTSUBSCRIPT ∗ + ∗ blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT ,

where |u|=4subscript𝑢4|u_{\mathbb{H}}|=4-\mathbb{H}| italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT | = 4 - blackboard_H. Using the fact that the unit sphere S(n)𝑆𝑛S(n\mathbb{H})italic_S ( italic_n blackboard_H ) is a (4n1)4𝑛1(4n-1)( 4 italic_n - 1 )-skeleton of EQ8𝐸subscript𝑄8EQ_{8}italic_E italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, it follows from Theorem1.2.6 and 1.2.5 that there are differentials

d4(n+1)(u2p(n))={j4n+3an+1u(n+1)u2p(n),neven,4j4n+3an+1u(n+1)u2p(n),noddsubscript𝑑4𝑛1superscriptsubscript𝑢superscript2𝑝𝑛casessubscript𝑗4𝑛3superscriptsubscript𝑎𝑛1superscriptsubscript𝑢𝑛1superscriptsubscript𝑢superscript2𝑝𝑛𝑛even4subscript𝑗4𝑛3superscriptsubscript𝑎𝑛1superscriptsubscript𝑢𝑛1superscriptsubscript𝑢superscript2𝑝𝑛𝑛oddd_{4(n+1)}(u_{\mathbb{H}}^{2^{p(n)}})=\begin{cases}j_{4n+3}\cdot a_{\mathbb{H}%}^{n+1}u_{\mathbb{H}}^{-(n+1)}\cdot u_{\mathbb{H}}^{2^{p(n)}},&n\text{ even},%\\4j_{4n+3}\cdot a_{\mathbb{H}}^{n+1}u_{\mathbb{H}}^{-(n+1)}\cdot u_{\mathbb{H}}%^{2^{p(n)}},&n\text{ odd}\end{cases}italic_d start_POSTSUBSCRIPT 4 ( italic_n + 1 ) end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) = { start_ROW start_CELL italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT ⋅ italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( italic_n + 1 ) end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL 4 italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT ⋅ italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( italic_n + 1 ) end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n odd end_CELL end_ROW

for n0𝑛0n\geq 0italic_n ≥ 0, where asubscript𝑎a_{\mathbb{H}}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT is detected by the generator of H4(Q8;π4eSQ8)/(8)superscript𝐻4subscript𝑄8superscriptsubscript𝜋4𝑒subscript𝑆subscript𝑄88H^{4}(Q_{8};\pi_{4-\mathbb{H}}^{e}S_{Q_{8}})\cong\mathbb{Z}/(8)italic_H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT 4 - blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ≅ blackboard_Z / ( 8 ).\triangleleft

In Section4 we investigate an additional property of the invertible elements produced by Theorem1.2.1 that makes precise a certain analogy between these equivariant “James-type periodicities” and vnsubscript𝑣𝑛v_{n}italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-periodicity in classical stable hom*otopy theory. This analogy was first highlighted by Behrens and Shah [BS20] in their construction of C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant uσsubscript𝑢𝜎u_{\sigma}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT-self maps. Given a 00-dimensional virtual complex G𝐺Gitalic_G-representation α𝛼\alphaitalic_α, there is a canonical invertible Thom class

tαπαMUG,subscript𝑡𝛼subscript𝜋𝛼𝑀subscript𝑈𝐺t_{\alpha}\in\pi_{\alpha}MU_{G},italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ,

where MUG𝑀subscript𝑈𝐺MU_{G}italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is tom Dieck’s hom*otopical G𝐺Gitalic_G-equivariant complex cobordism spectrum.

1.2.10 Definition (4.1.2).

A tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order n>0𝑛0n>0italic_n > 0 in a G𝐺Gitalic_G-ring spectrum R𝑅Ritalic_R is an invertible element tπnαGR𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝑅t\in\pi_{n\alpha}^{G}Ritalic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R lifting tαnsuperscriptsubscript𝑡𝛼𝑛t_{\alpha}^{n}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT under the Hurewicz map RRMUG𝑅tensor-product𝑅𝑀subscript𝑈𝐺R\rightarrow R\otimes MU_{G}italic_R → italic_R ⊗ italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT.\triangleleft

When α=|V|V𝛼𝑉𝑉\alpha=|V|-Vitalic_α = | italic_V | - italic_V one might call these uVsubscript𝑢𝑉u_{V}italic_u start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT-elements. Note that multiplication by a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element induces a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map: a self-map inducing multiplication by a power of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT in MUG𝑀subscript𝑈𝐺MU_{G}italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT-theory. The observation here is now the following.

1.2.11 Proposition (4.2.3).

The complex J𝐽Jitalic_J-hom*omorphism

J:KU~(SZ)G0πGD(Σ+Z)×J\colon\widetilde{KU}{}_{G}^{0}(SZ)\rightarrow\pi_{\star}^{G}D(\Sigma^{\infty}%_{+}Z)^{\times}italic_J : over~ start_ARG italic_K italic_U end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT

takes values in tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements for various α𝛼\alphaitalic_α: if |J(ξ)|=α𝐽𝜉𝛼|J(\xi)|=\alpha| italic_J ( italic_ξ ) | = italic_α then J(ξ)𝐽𝜉J(\xi)italic_J ( italic_ξ ) is a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element.\triangleleft

The analogous proposition holds with KU𝐾𝑈KUitalic_K italic_U and MU𝑀𝑈MUitalic_M italic_U replaced by KO𝐾𝑂KOitalic_K italic_O and MO𝑀𝑂MOitalic_M italic_O, or by KSp𝐾𝑆𝑝KSpitalic_K italic_S italic_p and MSp𝑀𝑆𝑝MSpitalic_M italic_S italic_p.

1.2.12 Example.

As H𝔽2C2C(aσm+1)tensor-product𝐻superscriptsubscript𝔽2subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1H\mathbb{F}_{2}^{C_{2}}\otimes C(a_{\sigma}^{m+1})italic_H blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ⊗ italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) is MOC2𝑀subscript𝑂subscript𝐶2MO_{C_{2}}italic_M italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT-oriented, it follows from the unoriented analogue of 1.2.11 that the invertible elements u2γ(m)σπ2γ(m)(1σ)C2C(aσm+1)subscript𝑢superscript2𝛾𝑚𝜎superscriptsubscript𝜋superscript2𝛾𝑚1𝜎subscript𝐶2𝐶superscriptsubscript𝑎𝜎𝑚1u_{2^{\gamma(m)}\sigma}\in\pi_{2^{\gamma(m)}(1-\sigma)}^{C_{2}}C(a_{\sigma}^{m%+1})italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT italic_σ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT ( 1 - italic_σ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) guaranteed by 1.2.3 have Hurewicz image uσ2γ(m)(H𝔽2C2)2γ(m)(1σ)C(aσm+1)superscriptsubscript𝑢𝜎superscript2𝛾𝑚subscript𝐻superscriptsubscript𝔽2subscript𝐶2superscript2𝛾𝑚1𝜎𝐶superscriptsubscript𝑎𝜎𝑚1u_{\sigma}^{2^{\gamma(m)}}\in(H\mathbb{F}_{2}^{C_{2}})_{2^{\gamma(m)}(1-\sigma%)}C(a_{\sigma}^{m+1})italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∈ ( italic_H blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT ( 1 - italic_σ ) end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ), where uσπ1σH𝔽2C2subscript𝑢𝜎subscript𝜋1𝜎𝐻superscriptsubscript𝔽2subscript𝐶2u_{\sigma}\in\pi_{1-\sigma}H\mathbb{F}_{2}^{C_{2}}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT italic_H blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the orientation class. In other words, we recover the uσsubscript𝑢𝜎u_{\sigma}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT-elements produced by Behrens–Shah in [BS20, Theorem 7.7].\triangleleft

Using equivariant nilpotence techniques we are able to bootstrap 1.2.11 into a general existence criterion for tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements.

1.2.13 Theorem (Theorem4.5.4).

Let G𝐺Gitalic_G be a finite group and R𝑅Ritalic_R be a G𝐺Gitalic_G-ring spectrum, and suppose

ΦCR0resCGα=0superscriptΦ𝐶𝑅0subscriptsuperscriptres𝐺𝐶𝛼0\Phi^{C}R\neq 0\implies\operatorname{res}^{G}_{C}\alpha=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R ≠ 0 ⟹ roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT italic_α = 0

for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. Then R𝑅Ritalic_R admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order dividing a power of |G|𝐺|G|| italic_G |.\triangleleft

There are more RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded periodicities than are accounted for by tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self maps. For example, there are stable equivalences SVSWsimilar-to-or-equalssuperscript𝑆𝑉superscript𝑆𝑊S^{V}\simeq S^{W}italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT that do not come from an isomorphism VW𝑉𝑊V\cong Witalic_V ≅ italic_W of G𝐺Gitalic_G-representations. Section5 contains some observations about this situation, mostly adapting work of tom Dieck, Hauschild, Petrie, and Tornehave [tDP78, tD79, Tor82] on hom*otopy equivalent representation spheres and the equivariant Adams conjecture. For example, we prove the following.

1.2.14 Theorem (Theorem5.2.3).

Let G𝐺Gitalic_G be a finite group and X𝑋Xitalic_X be a compact G𝐺Gitalic_G-spectrum. Given αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), there exists an equivalence ΣnαXXsimilar-to-or-equalssuperscriptΣ𝑛𝛼𝑋𝑋\Sigma^{n\alpha}X\simeq Xroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_X ≃ italic_X for some n1𝑛1n\geq 1italic_n ≥ 1 if and only if

ΦCX0|αC|=0superscriptΦ𝐶𝑋0superscript𝛼𝐶0\Phi^{C}X\neq 0\implies|\alpha^{C}|=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_X ≠ 0 ⟹ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0

for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G.\triangleleft

1.2.15 Example.

Given a finite group G𝐺Gitalic_G, G𝐺Gitalic_G-representation λ𝜆\lambdaitalic_λ, and αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), there exists an equivalence ΣnαC(aλ)C(aλ)similar-to-or-equalssuperscriptΣ𝑛𝛼𝐶subscript𝑎𝜆𝐶subscript𝑎𝜆\Sigma^{n\alpha}C(a_{\lambda})\simeq C(a_{\lambda})roman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) ≃ italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) for some n1𝑛1n\geq 1italic_n ≥ 1 if and only if

|λC|0|αC|=0superscript𝜆𝐶0superscript𝛼𝐶0|\lambda^{C}|\neq 0\implies|\alpha^{C}|=0| italic_λ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | ≠ 0 ⟹ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0

for all cyclic subgroups CG𝐶𝐺C\subseteq Gitalic_C ⊆ italic_G. Thus it is a purely representation-theoretic condition that determines when aλsubscript𝑎𝜆a_{\lambda}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT-torsion is α𝛼\alphaitalic_α-periodic (of some possibly large period).\triangleleft

As a general statement this is quite satisfactory, but as a practical matter it gives no control over the equivalences ΣnαXXsimilar-to-or-equalssuperscriptΣ𝑛𝛼𝑋𝑋\Sigma^{n\alpha}X\simeq Xroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_X ≃ italic_X. More can be said after inverting some primes not dividing the order of G𝐺Gitalic_G, and we make some comments about this situation in Subsection5.1. A clean general statement is available when G𝐺Gitalic_G is a p𝑝pitalic_p-group, where we prove the following.

Fix a prime p𝑝pitalic_p and finite p𝑝pitalic_p-group G𝐺Gitalic_G. In this case, Bousfield localization LKUG/psubscript𝐿𝐾subscript𝑈𝐺𝑝L_{KU_{G}/p}italic_L start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p end_POSTSUBSCRIPT behaves similarly in G𝐺Gitalic_G-equivariant hom*otopy theory to how K(1)𝐾1K(1)italic_K ( 1 )-localization behaves in nonequivariant hom*otopy theory. In particular, if \ellroman_ℓ generates a dense subgroup of p×/{±1}superscriptsubscript𝑝plus-or-minus1\mathbb{Z}_{p}^{\times}/\{\pm 1\}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT / { ± 1 } and we set

JG=Fib(ψψ1:(KOG)p(KOG)p),subscript𝐽𝐺Fib:superscript𝜓superscript𝜓1superscriptsubscript𝐾subscript𝑂𝐺𝑝superscriptsubscript𝐾subscript𝑂𝐺𝑝J_{G}=\operatorname{Fib}\left(\psi^{\ell}-\psi^{1}\colon(KO_{G})_{p}^{\wedge}%\rightarrow(KO_{G})_{p}^{\wedge}\right),italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = roman_Fib ( italic_ψ start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT - italic_ψ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT : ( italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT → ( italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT ) ,

then JGLKUG/pSGsimilar-to-or-equalssubscript𝐽𝐺subscript𝐿𝐾subscript𝑈𝐺𝑝subscript𝑆𝐺J_{G}\simeq L_{KU_{G}/p}S_{G}italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≃ italic_L start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, and more generally

LKUG/pD(Σ+Z)F(Σ+Z,JG)similar-to-or-equalssubscript𝐿𝐾subscript𝑈𝐺𝑝𝐷subscriptsuperscriptΣ𝑍𝐹subscriptsuperscriptΣ𝑍subscript𝐽𝐺L_{KU_{G}/p}D(\Sigma^{\infty}_{+}Z)\simeq F(\Sigma^{\infty}_{+}Z,J_{G})italic_L start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) ≃ italic_F ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z , italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT )

for any compact G𝐺Gitalic_G-space Z𝑍Zitalic_Z [Bal22, Corollary A.4.13]. Write jK(1)Z:RO(G)KOG0(Z)JG1(Z):superscriptsubscript𝑗𝐾1𝑍𝑅𝑂𝐺𝐾superscriptsubscript𝑂𝐺0𝑍superscriptsubscript𝐽𝐺1𝑍j_{K(1)}^{Z}\colon RO(G)\rightarrow KO_{G}^{0}(Z)\rightarrow J_{G}^{1}(Z)italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT : italic_R italic_O ( italic_G ) → italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) → italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_Z ) for the resulting boundary map.

1.2.16 Theorem (Theorem5.3.5).

Let G𝐺Gitalic_G be a finite p𝑝pitalic_p-group and Z𝑍Zitalic_Z be a compact G𝐺Gitalic_G-space. Given αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), there exists an invertible element in παD(Σ+Z)(p)subscript𝜋𝛼𝐷subscriptsubscriptsuperscriptΣ𝑍𝑝\pi_{\alpha}D(\Sigma^{\infty}_{+}Z)_{(p)}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT if and only if jK(1)Z(α)=0superscriptsubscript𝑗𝐾1𝑍𝛼0j_{K(1)}^{Z}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT ( italic_α ) = 0.\triangleleft

Thus the location of units in πGD(Σ+Z)(p)superscriptsubscript𝜋𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝑝\pi_{\star}^{G}D(\Sigma^{\infty}_{+}Z)_{(p)}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT is completely determined by K(1)𝐾1K(1)italic_K ( 1 )-local information.

In Section6 we work out several explicit examples. In particular we compute πλKOGsubscript𝜋absent𝜆𝐾subscript𝑂𝐺\pi_{\ast\lambda}KO_{G}italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT for a variety of finite groups G𝐺Gitalic_G and G𝐺Gitalic_G-representations λ𝜆\lambdaitalic_λ, producing explicit periodicities on C(aλn)𝐶superscriptsubscript𝑎𝜆𝑛C(a_{\lambda}^{n})italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) and infinite periodic families in πSGsubscript𝜋subscript𝑆𝐺\pi_{\star}S_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT.

Acknowledgements

This work was supported by NSF RTG grant DMS-1839968.

2. An RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G )-graded J𝐽Jitalic_J-hom*omorphism

In this section we construct the equivariant J𝐽Jitalic_J-hom*omorphism promised in the introduction. Throughout this section G𝐺Gitalic_G is a compact Lie group, and for simplicity we shall restrict our attention to compact G𝐺Gitalic_G-spaces.

2.1. Preliminaries

We begin by fixing a bit of notation. Fix F𝐹Fitalic_F to be one of the real division algebras \mathbb{R}blackboard_R, \mathbb{C}blackboard_C, or \mathbb{H}blackboard_H. All vector spaces, vector bundles, and so forth are understood to be with respect to F𝐹Fitalic_F. Write

KFG={KOG,F=,KUG,F=,KSpG,F=𝐾subscript𝐹𝐺cases𝐾subscript𝑂𝐺𝐹𝐾subscript𝑈𝐺𝐹𝐾𝑆subscript𝑝𝐺𝐹KF_{G}=\begin{cases}KO_{G},&F=\mathbb{R},\\KU_{G},&F=\mathbb{C},\\KSp_{G},&F=\mathbb{H}\end{cases}italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = { start_ROW start_CELL italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_R , end_CELL end_ROW start_ROW start_CELL italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_C , end_CELL end_ROW start_ROW start_CELL italic_K italic_S italic_p start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_H end_CELL end_ROW

for the G𝐺Gitalic_G-spectrum representing the K𝐾Kitalic_K-theory of G𝐺Gitalic_G-equivariant vector bundles, and

RF(G)=π0KFG𝑅𝐹𝐺subscript𝜋0𝐾subscript𝐹𝐺RF(G)=\pi_{0}KF_{G}italic_R italic_F ( italic_G ) = italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT

for the corresponding Grothendieck group of G𝐺Gitalic_G-representations.

If Z𝑍Zitalic_Z is a compact G𝐺Gitalic_G-space, then KFG0(Z)𝐾superscriptsubscript𝐹𝐺0𝑍KF_{G}^{0}(Z)italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) can be identified explicitly as

KFG0(Z)={G-equivariant vector bundles overZ}/(),𝐾superscriptsubscript𝐹𝐺0𝑍G-equivariant vector bundles overZsimilar-to\displaystyle KF_{G}^{0}(Z)=\{\text{$G$-equivariant vector bundles over $Z$}\}%/(\sim),italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) = { italic_G -equivariant vector bundles over italic_Z } / ( ∼ ) ,

where

ξζwhenξVζVfor some representationV.formulae-sequencesimilar-to𝜉𝜁whendirect-sum𝜉𝑉direct-sum𝜁𝑉for some representationV\xi\sim\zeta\quad\text{when}\quad\xi\oplus V\cong\zeta\oplus V\text{ for some %representation $V$}.italic_ξ ∼ italic_ζ when italic_ξ ⊕ italic_V ≅ italic_ζ ⊕ italic_V for some representation italic_V .

The reduced K𝐾Kitalic_K-group KF~(Z)G0\widetilde{KF}{}_{G}^{0}(Z)over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ), generally only defined when Z𝑍Zitalic_Z is pointed, may be similarly identified as

KF~(Z)G0={G-equivariant vector bundles overZ}/(),\widetilde{KF}{}_{G}^{0}(Z)=\{\text{$G$-equivariant vector bundles over $Z$}\}%/(\approx),over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) = { italic_G -equivariant vector bundles over italic_Z } / ( ≈ ) ,

where

ξζwhenξVζWfor some representationsVandW.formulae-sequence𝜉𝜁whendirect-sum𝜉𝑉direct-sum𝜁𝑊for some representationsVandW\xi\approx\zeta\quad\text{when}\quad\xi\oplus V\cong\zeta\oplus W\text{ for %some representations $V$ and $W$}.italic_ξ ≈ italic_ζ when italic_ξ ⊕ italic_V ≅ italic_ζ ⊕ italic_W for some representations italic_V and italic_W .

Write SZ=S0Z𝑆𝑍superscript𝑆0𝑍SZ=S^{0}\ast Zitalic_S italic_Z = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∗ italic_Z for the unreduced suspension of Z𝑍Zitalic_Z, and aZ:S0SZ:subscript𝑎𝑍superscript𝑆0𝑆𝑍a_{Z}\colon S^{0}\rightarrow SZitalic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT : italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S italic_Z for the inclusion of cone points. Then the restriction

aZ:KF~(SZ)G0π0KFGRF(G)a_{Z}\colon\widetilde{KF}{}_{G}^{0}(SZ)\rightarrow\pi_{0}KF_{G}\cong RF(G)italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ italic_R italic_F ( italic_G )

sends a vector bundle ξ𝜉\xiitalic_ξ over SZ𝑆𝑍SZitalic_S italic_Z to to the difference VW𝑉𝑊V-Witalic_V - italic_W, where V𝑉Vitalic_V and W𝑊Witalic_W are the restrictions of ξ𝜉\xiitalic_ξ to the cone points 11-1- 1 and 1111 respectively.

We separate out the following remark for easy reference.

2.1.1 Remark.

If V𝑉Vitalic_V is a G𝐺Gitalic_G-representation, then the representation sphere SVsuperscript𝑆𝑉S^{V}italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT is the pointed G𝐺Gitalic_G-space defined as the one-point compactification of V𝑉Vitalic_V. The suspension spectrum of SVsuperscript𝑆𝑉S^{V}italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT is invertible as a G𝐺Gitalic_G-spectrum, allowing one to construct virtual representation spheres Sα𝒮pGsuperscript𝑆𝛼𝒮superscriptp𝐺S^{\alpha}\in\mathcal{S}\mathrm{p}^{G}italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ∈ caligraphic_S roman_p start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT for any virtual representation αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ). However, whereas the assignment VSVmaps-to𝑉superscript𝑆𝑉V\mapsto S^{V}italic_V ↦ italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT is natural in V𝑉Vitalic_V, the G𝐺Gitalic_G-spectrum Sαsuperscript𝑆𝛼S^{\alpha}italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT is generally defined only up to noncanonical isomorphism.

This issue arises from the fact that if V𝑉Vitalic_V is a G𝐺Gitalic_G-representation, then Aut(V)Aut𝑉\operatorname{Aut}(V)roman_Aut ( italic_V ) may act nontrivially on SVsuperscript𝑆𝑉S^{V}italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT in the hom*otopy category of G𝐺Gitalic_G-spectra. If V𝑉Vitalic_V is defined over F=𝐹F=\mathbb{C}italic_F = blackboard_C or \mathbb{H}blackboard_H and we consider only F𝐹Fitalic_F-linear automorphisms, then in fact Aut(V)Aut𝑉\operatorname{Aut}(V)roman_Aut ( italic_V ) acts trivially on SVsuperscript𝑆𝑉S^{V}italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT up to hom*otopy and no such issues arise. If F=𝐹F=\mathbb{R}italic_F = blackboard_R then we will sidestep this issue by taking the convention that, for our purposes, Sαsuperscript𝑆𝛼S^{\alpha}italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT and πα()subscript𝜋𝛼\pi_{\alpha}({-})italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( - ) will only be defined up to signs, where “signs” refers to the orthogonal units in A(G)𝐴𝐺A(G)italic_A ( italic_G ), i.e.the image of tom Dieck’s hom*omorphism

j:RO(G)(π0SG)×:𝑗𝑅𝑂𝐺superscriptsubscript𝜋0subscript𝑆𝐺j\colon RO(G)\rightarrow(\pi_{0}S_{G})^{\times}italic_j : italic_R italic_O ( italic_G ) → ( italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT

sending a G𝐺Gitalic_G-representation V𝑉Vitalic_V to the class obtained by compactifying 1:VV:1𝑉𝑉-1\colon V\rightarrow V- 1 : italic_V → italic_V. Unfortunately we see no way to avoid this while maintaining that the source of the J𝐽Jitalic_J-hom*omorphism of Theorem2.2.1 is KO~(SZ)G0\widetilde{KO}{}_{G}^{0}(SZ)over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ), and not some more rigid but less uniformly computable object (such as MapG(Z,L(V,W))superscriptMap𝐺𝑍𝐿𝑉𝑊\operatorname{Map}^{G}(Z,L(V,W))roman_Map start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( italic_Z , italic_L ( italic_V , italic_W ) ) for fixed V𝑉Vitalic_V and W𝑊Witalic_W).

We warn the reader that, having taken this convention, we will generally not take the care needed to pin down precise orientations and signs in intermediate arguments as they will not affect the final results.\triangleleft

2.2. Constructing the J𝐽Jitalic_J-hom*omorphism

We now proceed to the construction. Fix a G𝐺Gitalic_G-space Z𝑍Zitalic_Z and vector bundle ξ𝜉\xiitalic_ξ over SZ𝑆𝑍SZitalic_S italic_Z, and write V𝑉Vitalic_V and W𝑊Witalic_W for the restrictions of ξ𝜉\xiitalic_ξ to the cone points 11-1- 1 and 1111. Let L(V,W)𝐿𝑉𝑊L(V,W)italic_L ( italic_V , italic_W ) denote the G𝐺Gitalic_G-space of linear isometries VW𝑉𝑊V\rightarrow Witalic_V → italic_W, and write

j:L(V,W)Map(SV,SW):𝑗𝐿𝑉𝑊subscriptMapsuperscript𝑆𝑉superscript𝑆𝑊j\colon L(V,W)\rightarrow\operatorname{Map}_{\ast}(S^{V},S^{W})italic_j : italic_L ( italic_V , italic_W ) → roman_Map start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT , italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT )

for the one-point compactification map. As SZ𝑆𝑍SZitalic_S italic_Z is obtained by gluing two contractible spaces along a copy of Z𝑍Zitalic_Z, the vector bundle ξ𝜉\xiitalic_ξ is classified by a clutching function

φξ:ZL(V,W),:subscript𝜑𝜉𝑍𝐿𝑉𝑊\varphi_{\xi}\colon Z\rightarrow L(V,W),italic_φ start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT : italic_Z → italic_L ( italic_V , italic_W ) ,

and the composite jφξ:ZMap(SV,SW):𝑗subscript𝜑𝜉𝑍subscriptMapsuperscript𝑆𝑉superscript𝑆𝑊j\circ\varphi_{\xi}\colon Z\rightarrow\operatorname{Map}_{\ast}(S^{V},S^{W})italic_j ∘ italic_φ start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT : italic_Z → roman_Map start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT , italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT ) is adjoint to a map

J(ξ):ΣV(Z+)SW.:𝐽𝜉superscriptΣ𝑉subscript𝑍superscript𝑆𝑊J(\xi)\colon\Sigma^{V}(Z_{+})\rightarrow S^{W}.italic_J ( italic_ξ ) : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ( italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) → italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT .

After stabilization, this defines a class

J(ξ)πVWGD(Σ+Z)𝐽𝜉superscriptsubscript𝜋𝑉𝑊𝐺𝐷subscriptsuperscriptΣ𝑍J(\xi)\in\pi_{V-W}^{G}D(\Sigma^{\infty}_{+}Z)italic_J ( italic_ξ ) ∈ italic_π start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z )

that we will denote by the same name.

2.2.1 Theorem.

The above construction extends to a natural hom*omorphism

J:KF~(SZ)G0πGD(Σ+Z)×,J\colon\widetilde{KF}{}_{G}^{0}(SZ)\rightarrow\pi_{\star}^{G}D(\Sigma^{\infty}%_{+}Z)^{\times},italic_J : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT ,

defined up to signs when F=𝐹F=\mathbb{R}italic_F = blackboard_R, with the property that

|J(ξ)|=αwhenaZξ=αRF(G).formulae-sequence𝐽𝜉𝛼whensubscript𝑎𝑍𝜉𝛼𝑅𝐹𝐺|J(\xi)|=\alpha\qquad\text{when}\qquad a_{Z}\xi=\alpha\in RF(G).| italic_J ( italic_ξ ) | = italic_α when italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT italic_ξ = italic_α ∈ italic_R italic_F ( italic_G ) .
Proof.

If ZVsubscript𝑍𝑉Z_{V}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT is the trivial bundle V×ZZ𝑉𝑍𝑍V\times Z\rightarrow Zitalic_V × italic_Z → italic_Z, then by construction J(ZV):ΣV(Z+)SV:𝐽subscript𝑍𝑉superscriptΣ𝑉subscript𝑍superscript𝑆𝑉J(Z_{V})\colon\Sigma^{V}(Z_{+})\rightarrow S^{V}italic_J ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ( italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) → italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT is the collapse map, adjoint to the unit 1π0GD(Σ+Z)1superscriptsubscript𝜋0𝐺𝐷subscriptsuperscriptΣ𝑍1\in\pi_{0}^{G}D(\Sigma^{\infty}_{+}Z)1 ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ). Recall that if ξ𝜉\xiitalic_ξ is any vector bundle over SZ𝑆𝑍SZitalic_S italic_Z, then there exists another vector bundle ξsuperscript𝜉\xi^{\prime}italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT for which ξξZVdirect-sum𝜉superscript𝜉subscript𝑍𝑉\xi\oplus\xi^{\prime}\cong Z_{V}italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≅ italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT for some G𝐺Gitalic_G-representation V𝑉Vitalic_V [Seg68, Proposition 2.4]. Therefore we may reduce to just verifying that J(ξξ)=J(ξ)J(ξ)𝐽direct-sum𝜉superscript𝜉𝐽𝜉𝐽superscript𝜉J(\xi\oplus\xi^{\prime})=J(\xi)\cdot J(\xi^{\prime})italic_J ( italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_J ( italic_ξ ) ⋅ italic_J ( italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) for any two vector bundles ξ𝜉\xiitalic_ξ and ξsuperscript𝜉\xi^{\prime}italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT over SZ𝑆𝑍SZitalic_S italic_Z. Write

φξ:ZL(V,W),φξ:ZL(V,W):subscript𝜑𝜉𝑍𝐿𝑉𝑊subscript𝜑superscript𝜉:𝑍𝐿superscript𝑉superscript𝑊\varphi_{\xi}\colon Z\rightarrow L(V,W),\qquad\varphi_{\xi^{\prime}}\colon Z%\rightarrow L(V^{\prime},W^{\prime})italic_φ start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT : italic_Z → italic_L ( italic_V , italic_W ) , italic_φ start_POSTSUBSCRIPT italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT : italic_Z → italic_L ( italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

for clutching functions for ξ𝜉\xiitalic_ξ and ξsuperscript𝜉\xi^{\prime}italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Then a clutching function for ξξdirect-sum𝜉superscript𝜉\xi\oplus\xi^{\prime}italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is given by

φξξ:ZL(VV,WW),φξξ(z)(v,v)=(φξ(z)(v),φξ(z)(v)).:subscript𝜑direct-sum𝜉superscript𝜉formulae-sequence𝑍𝐿direct-sum𝑉superscript𝑉direct-sum𝑊superscript𝑊subscript𝜑direct-sum𝜉superscript𝜉𝑧𝑣superscript𝑣subscript𝜑𝜉𝑧𝑣subscript𝜑superscript𝜉𝑧superscript𝑣\varphi_{\xi\oplus\xi^{\prime}}\colon Z\rightarrow L(V\oplus V^{\prime},W%\oplus W^{\prime}),\qquad\varphi_{\xi\oplus\xi^{\prime}}(z)(v,v^{\prime})=(%\varphi_{\xi}(z)(v),\varphi_{\xi^{\prime}}(z)(v^{\prime})).italic_φ start_POSTSUBSCRIPT italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT : italic_Z → italic_L ( italic_V ⊕ italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_W ⊕ italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_φ start_POSTSUBSCRIPT italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_z ) ( italic_v , italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_φ start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT ( italic_z ) ( italic_v ) , italic_φ start_POSTSUBSCRIPT italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_z ) ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) .

It follows that J(ξξ)𝐽direct-sum𝜉superscript𝜉J(\xi\oplus\xi^{\prime})italic_J ( italic_ξ ⊕ italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is the composite

,

which exactly corresponds to J(ξ)J(ξ)𝐽𝜉𝐽superscript𝜉J(\xi)\cdot J(\xi^{\prime})italic_J ( italic_ξ ) ⋅ italic_J ( italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ).∎

2.2.2 Example.

There is a cofiber sequence Z+S0SZsubscript𝑍superscript𝑆0𝑆𝑍Z_{+}\rightarrow S^{0}\rightarrow SZitalic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S italic_Z, and precomposing J𝐽Jitalic_J with restriction along the boundary map SZΣ(Z+)𝑆𝑍Σsubscript𝑍SZ\rightarrow\Sigma(Z_{+})italic_S italic_Z → roman_Σ ( italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) gives an equivariant J𝐽Jitalic_J-hom*omorphism of signature

KFG1(Z)π0D(Σ+Z)×,𝐾superscriptsubscript𝐹𝐺1𝑍subscript𝜋0𝐷superscriptsubscriptsuperscriptΣ𝑍KF_{G}^{-1}(Z)\rightarrow\pi_{0}D(\Sigma^{\infty}_{+}Z)^{\times},italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT ,

as considered, for example, in [Seg71].\triangleleft

2.2.3 Example.

Write

J~=J:KF~(SZ)G0π1GD(ΣSZ).\tilde{J}=\partial\circ J\colon\widetilde{KF}{}_{G}^{0}(SZ)\rightarrow\pi_{%\star-1}^{G}D(\Sigma^{\infty}SZ).over~ start_ARG italic_J end_ARG = ∂ ∘ italic_J : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT ⋆ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_S italic_Z ) .

If λ𝜆\lambdaitalic_λ is a G𝐺Gitalic_G-representation and Z=Sλ+1𝑍superscript𝑆𝜆1Z=S^{\lambda+1}italic_Z = italic_S start_POSTSUPERSCRIPT italic_λ + 1 end_POSTSUPERSCRIPT, then aZ=0subscript𝑎𝑍0a_{Z}=0italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = 0 and J~~𝐽\tilde{J}over~ start_ARG italic_J end_ARG recovers the equivariant J𝐽Jitalic_J-hom*omorphism of signature

πλ+2KFGπλ+1SG,subscript𝜋𝜆2𝐾subscript𝐹𝐺subscript𝜋𝜆1subscript𝑆𝐺\pi_{\lambda+2}KF_{G}\rightarrow\pi_{\lambda+1}S_{G},italic_π start_POSTSUBSCRIPT italic_λ + 2 end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT italic_λ + 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ,

as considered, for example, in [Lö78, Cra80, Min83].\triangleleft

2.2.4 Remark.

In general, if Z𝑍Zitalic_Z is G𝐺Gitalic_G-pointed then SZΣZsimilar-to-or-equals𝑆𝑍Σ𝑍SZ\simeq\Sigma Zitalic_S italic_Z ≃ roman_Σ italic_Z and aZ=0subscript𝑎𝑍0a_{Z}=0italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = 0, so the J𝐽Jitalic_J-hom*omorphism is of the form

KF~(Z)G1π0GD(Σ+Z).\widetilde{KF}{}_{G}^{-1}(Z)\rightarrow\pi_{0}^{G}D(\Sigma^{\infty}_{+}Z).over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) .

The basepoint of Z𝑍Zitalic_Z induces a splitting D(Σ+Z)SGD(ΣZ)similar-to-or-equals𝐷subscriptsuperscriptΣ𝑍direct-sumsubscript𝑆𝐺𝐷superscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)\simeq S_{G}\oplus D(\Sigma^{\infty}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) ≃ italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊕ italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z ), and so we may project onto the latter summand to obtain

J~=J:KF~(Z)G1π0GD(ΣZ).\tilde{J}=\partial\circ J\colon\widetilde{KF}{}_{G}^{-1}(Z)\rightarrow\pi_{0}^%{G}D(\Sigma^{\infty}Z).over~ start_ARG italic_J end_ARG = ∂ ∘ italic_J : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z ) .

Note that this need not be a group hom*omorphism, though it is if Z𝑍Zitalic_Z is G𝐺Gitalic_G-connected. On the other hand, one can also consider the (perhaps more familiar) J𝐽Jitalic_J-hom*omorphism

J:KF~(Z)G1π0GD(ΣZ)J^{\prime}\colon\widetilde{KF}{}_{G}^{-1}(Z)\rightarrow\pi_{0}^{G}D(\Sigma^{%\infty}Z)italic_J start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_Z ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z )

sending a pointed map ϕ:ZL(V,V):italic-ϕ𝑍𝐿𝑉𝑉\phi\colon Z\rightarrow L(V,V)italic_ϕ : italic_Z → italic_L ( italic_V , italic_V ) to the adjoint ΣVZSVsuperscriptΣ𝑉𝑍superscript𝑆𝑉\Sigma^{V}Z\rightarrow S^{V}roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT italic_Z → italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT of the composite jϕ:ZMap(SV,SV):𝑗italic-ϕ𝑍subscriptMapsuperscript𝑆𝑉superscript𝑆𝑉j\circ\phi\colon Z\rightarrow\operatorname{Map}_{\ast}(S^{V},S^{V})italic_j ∘ italic_ϕ : italic_Z → roman_Map start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT , italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ). If Z𝑍Zitalic_Z is G𝐺Gitalic_G-connected then J=J~superscript𝐽~𝐽J^{\prime}=\tilde{J}italic_J start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = over~ start_ARG italic_J end_ARG, but they can differ in general, as the next example demonstrates.\triangleleft

2.2.5 Example.

Take Z=S0𝑍superscript𝑆0Z=S^{0}italic_Z = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. The hom*omorphism j:RO(G)A(G)×:𝑗𝑅𝑂𝐺𝐴superscript𝐺j\colon RO(G)\rightarrow A(G)^{\times}italic_j : italic_R italic_O ( italic_G ) → italic_A ( italic_G ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT indicated in 2.1.1 factors through the surjection η:RO(G)=π0KOGπ1KOG:𝜂𝑅𝑂𝐺subscript𝜋0𝐾subscript𝑂𝐺subscript𝜋1𝐾subscript𝑂𝐺\eta\colon RO(G)=\pi_{0}KO_{G}\rightarrow\pi_{1}KO_{G}italic_η : italic_R italic_O ( italic_G ) = italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, and we have

J(ηα)=j(α),J~(ηα)=±(1j(α)).formulae-sequencesuperscript𝐽𝜂𝛼𝑗𝛼~𝐽𝜂𝛼plus-or-minus1𝑗𝛼J^{\prime}(\eta\cdot\alpha)=j(\alpha),\qquad\tilde{J}(\eta\cdot\alpha)=\pm(1-j%(\alpha)).italic_J start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ⋅ italic_α ) = italic_j ( italic_α ) , over~ start_ARG italic_J end_ARG ( italic_η ⋅ italic_α ) = ± ( 1 - italic_j ( italic_α ) ) .

For example J~(η)=±2~𝐽𝜂plus-or-minus2\tilde{J}(\eta)=\pm 2over~ start_ARG italic_J end_ARG ( italic_η ) = ± 2, and if σ𝜎\sigmaitalic_σ is a 1111-dimensional representation with index 2222 kernel KG𝐾𝐺K\subset Gitalic_K ⊂ italic_G then J~(ησ)=±trKG(1)~𝐽𝜂𝜎plus-or-minussuperscriptsubscripttr𝐾𝐺1\tilde{J}(\eta\cdot\sigma)=\pm\operatorname{tr}_{K}^{G}(1)over~ start_ARG italic_J end_ARG ( italic_η ⋅ italic_σ ) = ± roman_tr start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( 1 ).\triangleleft

3. The equivariant Atiyah–Hirzebruch spectral sequence

If Z𝑍Zitalic_Z is a G𝐺Gitalic_G-complex and R𝑅Ritalic_R is a G𝐺Gitalic_G-spectrum, then there is an Atiyah–Hirzebruch spectral sequence

E2α,f(Z;R)=HGf(Z;π¯α+fR)RGα(Z),superscriptsubscript𝐸2𝛼𝑓𝑍𝑅subscriptsuperscript𝐻𝑓𝐺𝑍subscript¯𝜋𝛼𝑓𝑅subscriptsuperscript𝑅𝛼𝐺𝑍E_{2}^{\alpha,f}(Z;R)=H^{f}_{G}(Z;\underline{\pi}_{\alpha+f}R)\Rightarrow R^{-%\alpha}_{G}(Z),italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_R ) = italic_H start_POSTSUPERSCRIPT italic_f end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT italic_α + italic_f end_POSTSUBSCRIPT italic_R ) ⇒ italic_R start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) ,

with E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-page the Bredon cohom*ology of Z𝑍Zitalic_Z with coefficients in the Mackey functor π¯Rsubscript¯𝜋𝑅\underline{\pi}_{\star}Runder¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R.

3.0.1 Example.

For Z=EG𝑍𝐸𝐺Z=EGitalic_Z = italic_E italic_G one obtains the hom*otopy fixed point spectral sequence

E2α,f=Hf(G;πα+feR)παGF(EG+,R)π0(F(Sα,R)hG),superscriptsubscript𝐸2𝛼𝑓superscript𝐻𝑓𝐺superscriptsubscript𝜋𝛼𝑓𝑒𝑅superscriptsubscript𝜋𝛼𝐺𝐹𝐸subscript𝐺𝑅subscript𝜋0𝐹superscriptsuperscript𝑆𝛼𝑅h𝐺E_{2}^{\alpha,f}=H^{f}(G;\pi_{\alpha+f}^{e}R)\Rightarrow\pi_{\alpha}^{G}F(EG_{%+},R)\cong\pi_{0}\left(F(S^{\alpha},R)^{\mathrm{h}G}\right),italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , italic_f end_POSTSUPERSCRIPT = italic_H start_POSTSUPERSCRIPT italic_f end_POSTSUPERSCRIPT ( italic_G ; italic_π start_POSTSUBSCRIPT italic_α + italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R ) ⇒ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_F ( italic_E italic_G start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_R ) ≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_F ( italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT , italic_R ) start_POSTSUPERSCRIPT roman_h italic_G end_POSTSUPERSCRIPT ) ,

with E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-page the group cohom*ology of G𝐺Gitalic_G with coefficients in the underlying hom*otopy groups πeRsuperscriptsubscript𝜋𝑒𝑅\pi_{\star}^{e}Ritalic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R.\triangleleft

In this section we apply the J𝐽Jitalic_J-hom*omorphism constructed in Section2 to obtain universal periodicities and differentials in these spectral sequences.

3.1. A technical lemma

We will need a technical lemma. Let p:ZT:𝑝𝑍𝑇p\colon Z\rightarrow Titalic_p : italic_Z → italic_T be a map of G𝐺Gitalic_G-spaces with a hom*otopy retraction i:TZ:𝑖𝑇𝑍i\colon T\rightarrow Zitalic_i : italic_T → italic_Z, so that piidTsimilar-to-or-equals𝑝𝑖subscriptid𝑇p\circ i\simeq\text{id}_{T}italic_p ∘ italic_i ≃ id start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. In particular, there is an equivalence

T/ZS(Z/T).similar-to-or-equals𝑇𝑍𝑆𝑍𝑇T/Z\simeq S(Z/T).italic_T / italic_Z ≃ italic_S ( italic_Z / italic_T ) .

Write

q:ZZ/T,:S(Z/T)T/ZSZ:𝑞𝑍𝑍𝑇:similar-to-or-equals𝑆𝑍𝑇𝑇𝑍𝑆𝑍q\colon Z\rightarrow Z/T,\qquad\partial\colon S(Z/T)\simeq T/Z\rightarrow SZitalic_q : italic_Z → italic_Z / italic_T , ∂ : italic_S ( italic_Z / italic_T ) ≃ italic_T / italic_Z → italic_S italic_Z

for the canonical maps, and note that

Sq:S(Z/T)SZS(Z/T):𝑆𝑞𝑆𝑍𝑇𝑆𝑍𝑆𝑍𝑇Sq\circ\partial\colon S(Z/T)\rightarrow SZ\rightarrow S(Z/T)italic_S italic_q ∘ ∂ : italic_S ( italic_Z / italic_T ) → italic_S italic_Z → italic_S ( italic_Z / italic_T )

is an equivalence. The following diagram of coCartesian squares may help illustrate the situation:

.

The retraction piidTsimilar-to-or-equals𝑝𝑖subscriptid𝑇p\circ i\simeq\text{id}_{T}italic_p ∘ italic_i ≃ id start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT induces a stable splitting

D(Σ+Z)D(Σ+T)D(ΣZ/T).similar-to-or-equals𝐷subscriptsuperscriptΣ𝑍direct-sum𝐷subscriptsuperscriptΣ𝑇𝐷superscriptΣ𝑍𝑇D(\Sigma^{\infty}_{+}Z)\simeq D(\Sigma^{\infty}_{+}T)\oplus D(\Sigma^{\infty}Z%/T).italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) ≃ italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_T ) ⊕ italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z / italic_T ) .

Here, D(ΣZ/T)𝐷superscriptΣ𝑍𝑇D(\Sigma^{\infty}Z/T)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z / italic_T ) is a module over D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ), and thus over D(Σ+T)𝐷subscriptsuperscriptΣ𝑇D(\Sigma^{\infty}_{+}T)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_T ) by restriction along p𝑝pitalic_p. We now have the following.

3.1.1 Lemma.

If ξKO~(SZ)G0\xi\in\widetilde{KO}{}_{G}^{0}(SZ)italic_ξ ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ), then under the above splitting we have

J(ξ)=(J(Siξ),J~((ξ))J(Siξ)),𝐽𝜉𝐽𝑆superscript𝑖𝜉~𝐽superscript𝜉𝐽𝑆superscript𝑖𝜉J(\xi)=(J(Si^{\ast}\xi),~{}\tilde{J}(\partial^{\ast}(\xi))\cdot J(Si^{\ast}\xi%)),italic_J ( italic_ξ ) = ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_ξ ) ) ⋅ italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) ,

where J~~𝐽\tilde{J}over~ start_ARG italic_J end_ARG is as in 2.2.4.

Proof.

The relevant diagram is

.

First suppose ξ=Spζ𝜉𝑆superscript𝑝𝜁\xi=Sp^{\ast}\zetaitalic_ξ = italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ζ for some ζKO~(ST)G0\zeta\in\widetilde{KO}{}_{G}^{0}(ST)italic_ζ ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_T ). In this case we have

J(ξ)=J(Spζ)=pJ(ζ)=(J(ζ),0)=(J(Siξ),0)𝐽𝜉𝐽𝑆superscript𝑝𝜁superscript𝑝𝐽𝜁𝐽𝜁0𝐽𝑆superscript𝑖𝜉0J(\xi)=J(Sp^{\ast}\zeta)=p^{\ast}J(\zeta)=(J(\zeta),0)=(J(Si^{\ast}\xi),0)italic_J ( italic_ξ ) = italic_J ( italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ζ ) = italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_J ( italic_ζ ) = ( italic_J ( italic_ζ ) , 0 ) = ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) , 0 )

as claimed. Next suppose Siξ=0𝑆superscript𝑖𝜉0Si^{\ast}\xi=0italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ = 0. In this case ξ=Sqξ𝜉𝑆superscript𝑞superscript𝜉\xi=Sq^{\ast}\partial^{\ast}\xiitalic_ξ = italic_S italic_q start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ and thus

J(ξ)=J(Sqξ)=qJ(ξ).𝐽𝜉𝐽𝑆superscript𝑞superscript𝜉superscript𝑞𝐽superscript𝜉J(\xi)=J(Sq^{\ast}\partial^{\ast}\xi)=q^{\ast}J(\partial^{\ast}\xi).italic_J ( italic_ξ ) = italic_J ( italic_S italic_q start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) = italic_q start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_J ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) .

Under the splitting

D(Σ+Z/T)SGD(ΣZ/T)similar-to-or-equals𝐷subscriptsuperscriptΣ𝑍𝑇direct-sumsubscript𝑆𝐺𝐷superscriptΣ𝑍𝑇D(\Sigma^{\infty}_{+}Z/T)\simeq S_{G}\oplus D(\Sigma^{\infty}Z/T)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z / italic_T ) ≃ italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊕ italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_Z / italic_T )

we have by definition

J(ξ)=(1,J~(ξ)),𝐽superscript𝜉1~𝐽superscript𝜉J(\partial^{\ast}\xi)=(1,\tilde{J}(\partial^{\ast}\xi)),italic_J ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) = ( 1 , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) ,

and thus

qJ(ξ)=q(1,J~(ξ))=(1,J~(ξ)).superscript𝑞𝐽superscript𝜉superscript𝑞1~𝐽superscript𝜉1~𝐽superscript𝜉q^{\ast}J(\partial^{\ast}\xi)=q^{\ast}(1,\tilde{J}(\partial^{\ast}\xi))=(1,%\tilde{J}(\partial^{\ast}\xi)).italic_q start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_J ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) = italic_q start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 1 , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) = ( 1 , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) .

Finally, for general ξ𝜉\xiitalic_ξ we combine the preceding cases to compute

J(ξ)𝐽𝜉\displaystyle J(\xi)italic_J ( italic_ξ )=J(ξSpSiξ)J(SpSiξ)absent𝐽𝜉𝑆superscript𝑝𝑆superscript𝑖𝜉𝐽𝑆superscript𝑝𝑆superscript𝑖𝜉\displaystyle=J(\xi-Sp^{\ast}Si^{\ast}\xi)\cdot J(Sp^{\ast}Si^{\ast}\xi)= italic_J ( italic_ξ - italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ⋅ italic_J ( italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ )
=(1,J~((ξSpSiξ)))(J(SiSpSiξ),0)absent1~𝐽superscript𝜉𝑆superscript𝑝𝑆superscript𝑖𝜉𝐽𝑆superscript𝑖𝑆superscript𝑝𝑆superscript𝑖𝜉0\displaystyle=(1,\tilde{J}(\partial^{\ast}(\xi-Sp^{\ast}Si^{\ast}\xi)))\cdot(J%(Si^{\ast}Sp^{\ast}Si^{\ast}\xi),0)= ( 1 , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_ξ - italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) ) ⋅ ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) , 0 )
=(1,J~(ξ))(J(Siξ),0)=(J(Siξ),J~(ξ)J(Siξ))absent1~𝐽superscript𝜉𝐽𝑆superscript𝑖𝜉0𝐽𝑆superscript𝑖𝜉~𝐽superscript𝜉𝐽𝑆superscript𝑖𝜉\displaystyle=(1,\tilde{J}(\partial^{\ast}\xi))\cdot(J(Si^{\ast}\xi),0)=(J(Si^%{\ast}\xi),\tilde{J}(\partial^{\ast}\xi)\cdot J(Si^{\ast}\xi))= ( 1 , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ) ⋅ ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) , 0 ) = ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) ⋅ italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ξ ) )

as claimed.∎

3.2. Periodicities and differentials in the equivariant AHSS

A G𝐺Gitalic_G-complex is a filtered G𝐺Gitalic_G-space

Z=colimnZn,𝑍subscriptcolim𝑛superscript𝑍absent𝑛Z=\operatorname*{colim}_{n\rightarrow\infty}Z^{\leq n},italic_Z = roman_colim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT ≤ italic_n end_POSTSUPERSCRIPT ,

where Znsuperscript𝑍absent𝑛Z^{\leq n}italic_Z start_POSTSUPERSCRIPT ≤ italic_n end_POSTSUPERSCRIPT is obtained from Z<nsuperscript𝑍absent𝑛Z^{<n}italic_Z start_POSTSUPERSCRIPT < italic_n end_POSTSUPERSCRIPT by attaching n𝑛nitalic_n-cells. For our purposes, this will mean that we have specified G𝐺Gitalic_G-sets Insubscript𝐼𝑛I_{n}italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT for each n0𝑛0n\geq 0italic_n ≥ 0, together with pushout squares

for n0𝑛0n\geq 0italic_n ≥ 0. Note in particular

Zn/Z<n(Dn×In)/(Sn1×In)Σn(In+).similar-to-or-equalssuperscript𝑍absent𝑛superscript𝑍absent𝑛superscript𝐷𝑛subscript𝐼𝑛superscript𝑆𝑛1subscript𝐼𝑛similar-to-or-equalssuperscriptΣ𝑛subscript𝐼limit-from𝑛Z^{\leq n}/Z^{<n}\simeq(D^{n}\times I_{n})/(S^{n-1}\times I_{n})\simeq\Sigma^{%n}(I_{n+}).italic_Z start_POSTSUPERSCRIPT ≤ italic_n end_POSTSUPERSCRIPT / italic_Z start_POSTSUPERSCRIPT < italic_n end_POSTSUPERSCRIPT ≃ ( italic_D start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) / ( italic_S start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≃ roman_Σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_I start_POSTSUBSCRIPT italic_n + end_POSTSUBSCRIPT ) .

For a G𝐺Gitalic_G-set I𝐼Iitalic_I and G𝐺Gitalic_G-spectrum R𝑅Ritalic_R, write

(π¯R)(I)=πGF(Σ+I,R)subscript¯𝜋𝑅𝐼superscriptsubscript𝜋𝐺𝐹subscriptsuperscriptΣ𝐼𝑅(\underline{\pi}_{\star}R)(I)=\pi_{\star}^{G}F(\Sigma^{\infty}_{+}I,R)( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R ) ( italic_I ) = italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_F ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_I , italic_R )

for the evaluation of the Mackey functor π¯Rsubscript¯𝜋𝑅\underline{\pi}_{\star}Runder¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R on I𝐼Iitalic_I. Then the Atiyah–Hirzebruch spectral sequence

E1α,f(Z;R)=(π¯α+fR)(If)RGα(Z)superscriptsubscript𝐸1𝛼𝑓𝑍𝑅subscript¯𝜋𝛼𝑓𝑅subscript𝐼𝑓subscriptsuperscript𝑅𝛼𝐺𝑍E_{1}^{\alpha,f}(Z;R)=(\underline{\pi}_{\alpha+f}R)(I_{f})\Rightarrow R^{-%\alpha}_{G}(Z)italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_R ) = ( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT italic_α + italic_f end_POSTSUBSCRIPT italic_R ) ( italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) ⇒ italic_R start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z )

is the spectral sequence associated to the filtration

F(Σ+Z,R)limfF(Σ+Z<f,E).similar-to-or-equals𝐹subscriptsuperscriptΣ𝑍𝑅subscript𝑓𝐹subscriptsuperscriptΣsuperscript𝑍absent𝑓𝐸F(\Sigma^{\infty}_{+}Z,R)\simeq\lim_{f\rightarrow\infty}F(\Sigma^{\infty}_{+}Z%^{<f},E).italic_F ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z , italic_R ) ≃ roman_lim start_POSTSUBSCRIPT italic_f → ∞ end_POSTSUBSCRIPT italic_F ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT , italic_E ) .

The E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-page is given by the Bredon cohom*ology groups

E2(Z;R)=HG(Z;π¯R).subscript𝐸2𝑍𝑅subscriptsuperscript𝐻𝐺𝑍subscript¯𝜋𝑅E_{2}(Z;R)=H^{\ast}_{G}(Z;\underline{\pi}_{\star}R).italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_Z ; italic_R ) = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R ) .

If f1𝑓1f\geq 1italic_f ≥ 1 then the J𝐽Jitalic_J-hom*omorphism defines a map

J~:E10,f(Z;KOG)=(π¯fKOG)(If)(π¯f1SG)(If)=E11,f(Z;SG).:~𝐽superscriptsubscript𝐸10𝑓𝑍𝐾subscript𝑂𝐺subscript¯𝜋𝑓𝐾subscript𝑂𝐺subscript𝐼𝑓subscript¯𝜋𝑓1subscript𝑆𝐺subscript𝐼𝑓superscriptsubscript𝐸11𝑓𝑍subscript𝑆𝐺\tilde{J}\colon E_{1}^{0,f}(Z;KO_{G})=(\underline{\pi}_{f}KO_{G})(I_{f})%\rightarrow(\underline{\pi}_{f-1}S_{G})(I_{f})=E_{1}^{-1,f}(Z;S_{G}).over~ start_ARG italic_J end_ARG : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) = ( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ( italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) → ( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT italic_f - 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ( italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) .

In general Er(Z;R)subscript𝐸𝑟𝑍𝑅E_{r}(Z;R)italic_E start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_Z ; italic_R ) is a module over Er(Z;SG)subscript𝐸𝑟𝑍subscript𝑆𝐺E_{r}(Z;S_{G})italic_E start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_Z ; italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ), and we have the following.

3.2.1 Theorem.

Fix αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), and suppose that the image of α𝛼\alphaitalic_α in KOG0(Z)𝐾superscriptsubscript𝑂𝐺0𝑍KO_{G}^{0}(Z)italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) is detected by bE10,f(Z;KOG)𝑏superscriptsubscript𝐸10𝑓𝑍𝐾subscript𝑂𝐺b\in E_{1}^{0,f}(Z;KO_{G})italic_b ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) with f1𝑓1f\geq 1italic_f ≥ 1. Then there exists an invertible element tαE1α,0(Z;R)subscript𝑡𝛼superscriptsubscript𝐸1𝛼0𝑍𝑅t_{\alpha}\in E_{1}^{\alpha,0}(Z;R)italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α , 0 end_POSTSUPERSCRIPT ( italic_Z ; italic_R ) which survives to the Efsubscript𝐸𝑓E_{f}italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT-page, whereupon

df(tα)=±J~(b)tαsubscript𝑑𝑓subscript𝑡𝛼plus-or-minus~𝐽𝑏subscript𝑡𝛼d_{f}(t_{\alpha})=\pm\tilde{J}(b)t_{\alpha}italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = ± over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT

in E1α1,f(Z;R)superscriptsubscript𝐸1𝛼1𝑓𝑍𝑅E_{1}^{\alpha-1,f}(Z;R)italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α - 1 , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_R ), where ±plus-or-minus\pm± refers to signs in the sense of 2.1.1.

Proof.

We may as well suppose R=SG𝑅subscript𝑆𝐺R=S_{G}italic_R = italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. The relevant diagram is the following:

Here we have abbreviated D(X)=D(ΣX)𝐷𝑋𝐷superscriptΣ𝑋D(X)=D(\Sigma^{\infty}X)italic_D ( italic_X ) = italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_X ) for a pointed G𝐺Gitalic_G-space X𝑋Xitalic_X.

As α𝛼\alphaitalic_α is detected by bE10,f(Z;KOG)𝑏superscriptsubscript𝐸10𝑓𝑍𝐾subscript𝑂𝐺b\in E_{1}^{0,f}(Z;KO_{G})italic_b ∈ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , italic_f end_POSTSUPERSCRIPT ( italic_Z ; italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ), there exists b~KO~(SZ<f)G0\tilde{b}\in\widetilde{KO}{}^{0}_{G}(SZ^{<f})over~ start_ARG italic_b end_ARG ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_S italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT ) satisfying (b~)=b~𝑏𝑏\partial(\tilde{b})=b∂ ( over~ start_ARG italic_b end_ARG ) = italic_b and restricting to α𝛼\alphaitalic_α along S0SZ<fsuperscript𝑆0𝑆superscript𝑍absent𝑓S^{0}\rightarrow SZ^{<f}italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT. Applying the J𝐽Jitalic_J-hom*omorphism we obtain an invertible element

J(b~)παGD(Σ+Z<f).𝐽~𝑏superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣsuperscript𝑍absent𝑓J(\tilde{b})\in\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z^{<f}).italic_J ( over~ start_ARG italic_b end_ARG ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT ) .

We take tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT to be the image of J(b~)𝐽~𝑏J(\tilde{b})italic_J ( over~ start_ARG italic_b end_ARG ) under restriction along I0=Z0Z<fsubscript𝐼0superscript𝑍absent0superscript𝑍absent𝑓I_{0}=Z^{\leq 0}\rightarrow Z^{<f}italic_I start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Z start_POSTSUPERSCRIPT ≤ 0 end_POSTSUPERSCRIPT → italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT; we will also abuse notation by writing the same for the image of J(b~)𝐽~𝑏J(\tilde{b})italic_J ( over~ start_ARG italic_b end_ARG ) under restriction along the map if:IfZ<f:subscript𝑖𝑓subscript𝐼𝑓superscript𝑍absent𝑓i_{f}\colon I_{f}\rightarrow Z^{<f}italic_i start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT : italic_I start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT → italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT. Then to say that df(tα)=J~(b)tαsubscript𝑑𝑓subscript𝑡𝛼~𝐽𝑏subscript𝑡𝛼d_{f}(t_{\alpha})=\tilde{J}(b)\cdot t_{\alpha}italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = over~ start_ARG italic_J end_ARG ( italic_b ) ⋅ italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT is to say that (J(b~))=J~(b)tα𝐽~𝑏~𝐽𝑏subscript𝑡𝛼\partial(J(\tilde{b}))=\tilde{J}(b)\cdot t_{\alpha}∂ ( italic_J ( over~ start_ARG italic_b end_ARG ) ) = over~ start_ARG italic_J end_ARG ( italic_b ) ⋅ italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.

Under the splitting

D((Sf1×If+)+)D(If+)D(Σf1If+)similar-to-or-equals𝐷subscriptsuperscript𝑆𝑓1subscript𝐼limit-from𝑓direct-sum𝐷subscript𝐼limit-from𝑓𝐷superscriptΣ𝑓1subscript𝐼limit-from𝑓D((S^{f-1}\times I_{f+})_{+})\simeq D(I_{f+})\oplus D(\Sigma^{f-1}I_{f+})italic_D ( ( italic_S start_POSTSUPERSCRIPT italic_f - 1 end_POSTSUPERSCRIPT × italic_I start_POSTSUBSCRIPT italic_f + end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ≃ italic_D ( italic_I start_POSTSUBSCRIPT italic_f + end_POSTSUBSCRIPT ) ⊕ italic_D ( roman_Σ start_POSTSUPERSCRIPT italic_f - 1 end_POSTSUPERSCRIPT italic_I start_POSTSUBSCRIPT italic_f + end_POSTSUBSCRIPT )

we may identify

e(x)=(if(x),(x))superscript𝑒𝑥superscriptsubscript𝑖𝑓𝑥𝑥e^{\ast}(x)=(i_{f}^{\ast}(x),\partial(x))italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x ) = ( italic_i start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x ) , ∂ ( italic_x ) )

for any xπD(Z+<f)𝑥subscript𝜋𝐷subscriptsuperscript𝑍absent𝑓x\in\pi_{\star}D(Z^{<f}_{+})italic_x ∈ italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_D ( italic_Z start_POSTSUPERSCRIPT < italic_f end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ). Using Lemma3.1.1, we compute

eJ(b~)=J(Seb~)superscript𝑒𝐽~𝑏𝐽𝑆superscript𝑒~𝑏\displaystyle e^{\ast}J(\tilde{b})=J(Se^{\ast}\tilde{b})italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_J ( over~ start_ARG italic_b end_ARG ) = italic_J ( italic_S italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG )=(J(Si(Se)b~),J~(Seb~)J(SiSeb~)).absent𝐽𝑆superscript𝑖superscript𝑆𝑒~𝑏~𝐽superscript𝑆superscript𝑒~𝑏𝐽𝑆superscript𝑖𝑆superscript𝑒~𝑏\displaystyle=(J(Si^{\ast}(Se)^{\ast}\tilde{b}),~{}\tilde{J}(\partial^{\ast}Se%^{\ast}\tilde{b})\cdot J(Si^{\ast}Se^{\ast}\tilde{b})).= ( italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_S italic_e ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG ) , over~ start_ARG italic_J end_ARG ( ∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG ) ⋅ italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG ) ) .

Here, by construction we have (Se)b~=bsuperscriptsuperscript𝑆𝑒~𝑏𝑏\partial^{\ast}(Se)^{\ast}\tilde{b}=b∂ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_S italic_e ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG = italic_b and J(Si(Se)b~)=tα𝐽𝑆superscript𝑖superscript𝑆𝑒~𝑏subscript𝑡𝛼J(Si^{\ast}(Se)^{\ast}\tilde{b})=t_{\alpha}italic_J ( italic_S italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_S italic_e ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG ) = italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, implying that

eJ(b~)=(tα,J~(b)tα),superscript𝑒𝐽~𝑏subscript𝑡𝛼~𝐽𝑏subscript𝑡𝛼e^{\ast}J(\tilde{b})=(t_{\alpha},\tilde{J}(b)\cdot t_{\alpha}),italic_e start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_J ( over~ start_ARG italic_b end_ARG ) = ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over~ start_ARG italic_J end_ARG ( italic_b ) ⋅ italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) ,

and so (J(b~))=J~(b)tα𝐽~𝑏~𝐽𝑏subscript𝑡𝛼\partial(J(\tilde{b}))=\tilde{J}(b)t_{\alpha}∂ ( italic_J ( over~ start_ARG italic_b end_ARG ) ) = over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT as claimed.∎

4. Equivariant tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self maps and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements

This section contains our study of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self maps, connecting the periodicities produced by the J𝐽Jitalic_J-hom*omorphism of Section2 to periodicities in equivariant cobordism.

4.1. Equivariant cobordism and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements

We begin by recalling the definitions needed to make sense of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements. Let F𝐹Fitalic_F denote one of the real division algebras \mathbb{R}blackboard_R, \mathbb{C}blackboard_C, or \mathbb{H}blackboard_H, and write

MFG={MOG,F=,MUG,F=,MSpG,F=𝑀subscript𝐹𝐺cases𝑀subscript𝑂𝐺𝐹𝑀subscript𝑈𝐺𝐹𝑀𝑆subscript𝑝𝐺𝐹MF_{G}=\begin{cases}MO_{G},&F=\mathbb{R},\\MU_{G},&F=\mathbb{C},\\MSp_{G},&F=\mathbb{H}\end{cases}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = { start_ROW start_CELL italic_M italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_R , end_CELL end_ROW start_ROW start_CELL italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_C , end_CELL end_ROW start_ROW start_CELL italic_M italic_S italic_p start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , end_CELL start_CELL italic_F = blackboard_H end_CELL end_ROW

for the corresponding G𝐺Gitalic_G-equivariant hom*otopical cobordism spectrum. This was originally constructed by tom Dieck [tD70] when F=𝐹F=\mathbb{C}italic_F = blackboard_C, and the construction works just as well for F=𝐹F=\mathbb{R}italic_F = blackboard_R and F=𝐹F=\mathbb{H}italic_F = blackboard_H. To be precise tom Dieck constructs MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT as a G𝐺Gitalic_G-equivariant cohom*ology theory; a good construction of MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT as a G𝐺Gitalic_G-spectrum suitable for our purposes may be found in [Sin01]. The G𝐺Gitalic_G-spectra MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT are compatible as G𝐺Gitalic_G varies, and assemble together to form a highly structured globally equivariant ring spectrum. We refer the reader to [Sch18, Chapter 6] for a careful construction of MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT which incorporates this additional structure.

A vector bundle γ𝛾\gammaitalic_γ over a compact G𝐺Gitalic_G-space Z𝑍Zitalic_Z has associated sphere bundle S(γ)𝑆𝛾S(\gamma)italic_S ( italic_γ ) and disk bundle D(γ)𝐷𝛾D(\gamma)italic_D ( italic_γ ), and the Thom space of γ𝛾\gammaitalic_γ is given by

Th(γ)=D(γ)/S(γ).Th𝛾𝐷𝛾𝑆𝛾\operatorname{Th}(\gamma)=D(\gamma)/S(\gamma).roman_Th ( italic_γ ) = italic_D ( italic_γ ) / italic_S ( italic_γ ) .

This is a pointed G𝐺Gitalic_G-space, and we will generally not distinguish between it and its suspension spectrum. Associated to γ𝛾\gammaitalic_γ is a Thom class

tγMF~ThG|γ|(γ),subscript𝑡𝛾~𝑀𝐹subscriptsuperscriptTh𝛾𝐺𝛾t_{\gamma}\in\widetilde{MF}{}_{G}^{-|\gamma|}\operatorname{Th}(\gamma),italic_t start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ∈ over~ start_ARG italic_M italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT - | italic_γ | end_POSTSUPERSCRIPT roman_Th ( italic_γ ) ,

cupping with which induces the Thom isomorphism

MF~ThG(γ)MFG+|γ|(Z).~𝑀𝐹subscriptsuperscriptTh𝐺𝛾𝑀superscriptsubscript𝐹𝐺absent𝛾𝑍\widetilde{MF}{}_{G}^{\star}\operatorname{Th}(\gamma)\cong MF_{G}^{\star+|%\gamma|}(Z).over~ start_ARG italic_M italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT roman_Th ( italic_γ ) ≅ italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⋆ + | italic_γ | end_POSTSUPERSCRIPT ( italic_Z ) .

Moreover, MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is the universal G𝐺Gitalic_G-spectrum with such Thom isomorphisms [Oko82].

We only need the simplest example of a Thom class. Given a G𝐺Gitalic_G-representation V𝑉Vitalic_V, we write

tVπV|V|MFGsubscript𝑡𝑉subscript𝜋𝑉𝑉𝑀subscript𝐹𝐺t_{V}\in\pi_{V-|V|}MF_{G}italic_t start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_V - | italic_V | end_POSTSUBSCRIPT italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT

for the Thom class of V𝑉Vitalic_V considered as a vector bundle over a point, noting that Th(V)=SVTh𝑉superscript𝑆𝑉\operatorname{Th}(V)=S^{V}roman_Th ( italic_V ) = italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT. This satisfies

tVW=tVtW,tFn=1,formulae-sequencesubscript𝑡direct-sum𝑉𝑊subscript𝑡𝑉subscript𝑡𝑊subscript𝑡superscript𝐹𝑛1t_{V\oplus W}=t_{V}t_{W},\qquad t_{F^{n}}=1,italic_t start_POSTSUBSCRIPT italic_V ⊕ italic_W end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_F start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = 1 ,

and has inverse the orientation class uVπ|V|VMFGsubscript𝑢𝑉subscript𝜋𝑉𝑉𝑀subscript𝐹𝐺u_{V}\in\pi_{|V|-V}MF_{G}italic_u start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT | italic_V | - italic_V end_POSTSUBSCRIPT italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. Moreover tVsubscript𝑡𝑉t_{V}italic_t start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT depends only on the isomorphism class of V𝑉Vitalic_V, allowing for the following definition.

4.1.1 Definition.

The Thom class tαπα|α|MFGsubscript𝑡𝛼subscript𝜋𝛼𝛼𝑀subscript𝐹𝐺t_{\alpha}\in\pi_{\alpha-|\alpha|}MF_{G}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α - | italic_α | end_POSTSUBSCRIPT italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT of a virtual G𝐺Gitalic_G-representation α=VW𝛼𝑉𝑊\alpha=V-Witalic_α = italic_V - italic_W is defined as tα=tVtW1subscript𝑡𝛼subscript𝑡𝑉superscriptsubscript𝑡𝑊1t_{\alpha}=t_{V}t_{W}^{-1}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.\triangleleft

From now on, we shall assume that α𝛼\alphaitalic_α has virtual dimension zero. This loses no real generality for our purposes, and is convenient as it ensures |tα|=αsubscript𝑡𝛼𝛼|t_{\alpha}|=\alpha| italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT | = italic_α.

4.1.2 Definition.

A tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order n>0𝑛0n>0italic_n > 0 in a G𝐺Gitalic_G-ring spectrum R𝑅Ritalic_R is an invertible element tπnαGR𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝑅t\in\pi_{n\alpha}^{G}Ritalic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R lifting tαnsuperscriptsubscript𝑡𝛼𝑛t_{\alpha}^{n}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT under the Hurewicz map RRMUG𝑅tensor-product𝑅𝑀subscript𝑈𝐺R\rightarrow R\otimes MU_{G}italic_R → italic_R ⊗ italic_M italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT.\triangleleft

The condition that a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element is invertible is automatic if, for example, R𝑅Ritalic_R is MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT-local. We include it as our examples satisfy it.

4.1.3 Definition.

A tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map of order n1𝑛1n\geq 1italic_n ≥ 1 on a G𝐺Gitalic_G-spectrum X𝑋Xitalic_X is an equivalence

f:ΣnαXX:𝑓similar-tosuperscriptΣ𝑛𝛼𝑋𝑋f\colon\Sigma^{n\alpha}X\xrightarrow{\raisebox{-1.0pt}{\tiny{$\sim$}}}Xitalic_f : roman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_X start_ARROW over∼ → end_ARROW italic_X

which induces multiplication by tαnsuperscriptsubscript𝑡𝛼𝑛t_{\alpha}^{n}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT after smashing with MFG𝑀subscript𝐹𝐺MF_{G}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, that is for which MFGf=tαnXtensor-product𝑀subscript𝐹𝐺𝑓tensor-productsuperscriptsubscript𝑡𝛼𝑛𝑋MF_{G}\otimes f=t_{\alpha}^{n}\otimes Xitalic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_f = italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⊗ italic_X as self maps of MFGXtensor-product𝑀subscript𝐹𝐺𝑋MF_{G}\otimes Xitalic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_X.\triangleleft

We record the following for easy reference.

4.1.4 Lemma.

If tπnαR𝑡subscript𝜋𝑛𝛼𝑅t\in\pi_{n\alpha}Ritalic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT italic_R is a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element and M𝑀Mitalic_M is an R𝑅Ritalic_R-module, then multiplication by t𝑡titalic_t defines a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map ΣnαMMsuperscriptΣ𝑛𝛼𝑀𝑀\Sigma^{n\alpha}M\rightarrow Mroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_M → italic_M. Conversely, every R𝑅Ritalic_R-linear tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map ΣnαRRsuperscriptΣ𝑛𝛼𝑅𝑅\Sigma^{n\alpha}R\rightarrow Rroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_R → italic_R is given by multiplication with a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element.

Proof.

Immediate from the definitions.∎

4.2. Vector bundles and K𝐾Kitalic_K-theory

Let Z𝑍Zitalic_Z be a compact G𝐺Gitalic_G-space. We now relate the study of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements in D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) to the study of vector bundles on Z𝑍Zitalic_Z.

Given a G𝐺Gitalic_G-representation V𝑉Vitalic_V, write ZVsubscript𝑍𝑉Z_{V}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT for the vector bundle V×ZZ𝑉𝑍𝑍V\times Z\rightarrow Zitalic_V × italic_Z → italic_Z. This has Thom spectrum

Th(ZV)ΣVΣ+Z.similar-to-or-equalsThsubscript𝑍𝑉superscriptΣ𝑉subscriptsuperscriptΣ𝑍\operatorname{Th}(Z_{V})\simeq\Sigma^{V}\Sigma^{\infty}_{+}Z.roman_Th ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) ≃ roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z .

In particular, a stable equivalence ZVZWsubscript𝑍𝑉subscript𝑍𝑊Z_{V}\cong Z_{W}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ≅ italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT of vector bundles over Z𝑍Zitalic_Z induces an equivalence ΣVΣ+ZΣWΣ+Zsimilar-to-or-equalssuperscriptΣ𝑉subscriptsuperscriptΣ𝑍superscriptΣ𝑊subscriptsuperscriptΣ𝑍\Sigma^{V}\Sigma^{\infty}_{+}Z\simeq\Sigma^{W}\Sigma^{\infty}_{+}Zroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ≃ roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z. The basic observation is that this is determined by a tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-element in D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ), and that such elements are parametrized by the J𝐽Jitalic_J-hom*omorphism of Section2, as we now explain.

If ξ𝜉\xiitalic_ξ is a vector bundle over Z𝑍Zitalic_Z, then the Thom diagonal Th(ξ)Th(ξ)Σ+ZTh𝜉tensor-productTh𝜉subscriptsuperscriptΣ𝑍\operatorname{Th}(\xi)\rightarrow\operatorname{Th}(\xi)\otimes\Sigma^{\infty}_%{+}Zroman_Th ( italic_ξ ) → roman_Th ( italic_ξ ) ⊗ roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z transposes to make Th(ξ)Th𝜉\operatorname{Th}(\xi)roman_Th ( italic_ξ ) into a module over the Spanier–Whitehead dual D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ). When ξ=ZV𝜉subscript𝑍𝑉\xi=Z_{V}italic_ξ = italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT, one obtains the usual module structure on Th(ZV)=ΣVΣ+ZThsubscript𝑍𝑉superscriptΣ𝑉subscriptsuperscriptΣ𝑍\operatorname{Th}(Z_{V})=\Sigma^{V}\Sigma^{\infty}_{+}Zroman_Th ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) = roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z. In particular, a map ZVZWsubscript𝑍𝑉subscript𝑍𝑊Z_{V}\rightarrow Z_{W}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT → italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT of vector bundles induces a D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z )-linear map ΣVΣ+ZΣWΣ+ZsuperscriptΣ𝑉subscriptsuperscriptΣ𝑍superscriptΣ𝑊subscriptsuperscriptΣ𝑍\Sigma^{V}\Sigma^{\infty}_{+}Z\rightarrow\Sigma^{W}\Sigma^{\infty}_{+}Zroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z → roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z. By duality, such a map is given by capping with an element of πVWGD(Σ+Z)superscriptsubscript𝜋𝑉𝑊𝐺𝐷subscriptsuperscriptΣ𝑍\pi_{V-W}^{G}D(\Sigma^{\infty}_{+}Z)italic_π start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ).

4.2.1 Remark.

Explicitly, given a map f:ΣVΣ+ZΣWΣ+Z:𝑓superscriptΣ𝑉subscriptsuperscriptΣ𝑍superscriptΣ𝑊subscriptsuperscriptΣ𝑍f\colon\Sigma^{V}\Sigma^{\infty}_{+}Z\rightarrow\Sigma^{W}\Sigma^{\infty}_{+}Zitalic_f : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z → roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z one defines tπVWGD(Σ+Z)𝑡superscriptsubscript𝜋𝑉𝑊𝐺𝐷subscriptsuperscriptΣ𝑍t\in\pi_{V-W}^{G}D(\Sigma^{\infty}_{+}Z)italic_t ∈ italic_π start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) to be the composite

,

and when f𝑓fitalic_f is D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z )-linear it may be recovered from t𝑡titalic_t as the composite

.\leavevmode\hbox to204.27pt{\vbox to18.27pt{\pgfpicture\makeatletter\hbox{%\hskip 102.13326pt\lower-9.18286pt\hbox to0.0pt{\pgfsys@beginscope%\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}%\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}%{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hboxto%0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{%{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-102.13326pt}{-9.08302pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{%\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#%\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{%\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 2%0.35416pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-16.04861pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{%rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma^{V}\Sigma^{%\infty}_{+}Z}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 20.35416pt\hfil&%\hfil\hskip 60.64716pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{%\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-32.34164pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{%rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma^{V}\Sigma^{%\infty}_{+}Z\otimes\Sigma^{\infty}_{+}Z}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 36.64719pt\hfil&%\hfil\hskip 45.13191pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{%\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-16.8264pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb%}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma^{W}\Sigma^{%\infty}_{+}Z}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.13194pt\hfil\cr%}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{}{{}{}{}}{}{{}{}{}}{{{{{}}{{}{}}{}{}{{}{}}}}}{}{{{{{}}{{}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope%\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{%}{}{{}}\pgfsys@moveto{-61.22495pt}{-6.58302pt}\pgfsys@lineto{-38.02493pt}{-6.5%8302pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{%}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{%1.0}{-37.82495pt}{-6.58302pt}\pgfsys@invoke{ }\pgfsys@invoke{ %\lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}%\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-56.48051pt}{-4.23026pt}\pgfsys@invoke{ }\hbox{{\definecolor{%pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\Sigma^{V}%\Delta}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}{}{}}{}{{}{}{}}{{{{{}}{{}{}}{}{}{{}{}}}}}{}{{{{{}}{{}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope%\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{%}{}{{}}\pgfsys@moveto{36.0694pt}{-6.58302pt}\pgfsys@lineto{59.26941pt}{-6.5830%2pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{%{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0%}{59.46939pt}{-6.58302pt}\pgfsys@invoke{ }\pgfsys@invoke{ %\lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}%\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{36.71591pt}{-2.73029pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor%}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{t\otimes%\Sigma^{\infty}_{+}Z}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }%\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ⊗ roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Δ italic_t ⊗ roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z .

We can now give the following.

4.2.2 Lemma.

Fix an equivalence ZVZWsimilar-tosubscript𝑍𝑉subscript𝑍𝑊Z_{V}\xrightarrow{\raisebox{-1.0pt}{\tiny{$\sim$}}}Z_{W}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT start_ARROW over∼ → end_ARROW italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT of vector bundles over Z𝑍Zitalic_Z with associated equivalence f:ΣVΣ+ZΣWΣ+Z:𝑓similar-tosuperscriptΣ𝑉subscriptsuperscriptΣ𝑍superscriptΣ𝑊subscriptsuperscriptΣ𝑍f\colon\Sigma^{V}\Sigma^{\infty}_{+}Z\xrightarrow{\raisebox{-1.0pt}{\tiny{$%\sim$}}}\Sigma^{W}\Sigma^{\infty}_{+}Zitalic_f : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z start_ARROW over∼ → end_ARROW roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z of Thom spectra. Then f𝑓fitalic_f is a tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-self map and the associated class tπVWGD(Σ+Z)𝑡superscriptsubscript𝜋𝑉𝑊𝐺𝐷subscriptsuperscriptΣ𝑍t\in\pi_{V-W}^{G}D(\Sigma^{\infty}_{+}Z)italic_t ∈ italic_π start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) is a tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-element.

Proof.

By the above discussion and Lemma4.1.4, it suffices to show that t𝑡titalic_t is a tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-element. By definition t=f(1)𝑡superscript𝑓1t=f^{\ast}(1)italic_t = italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 1 ), where f:MFG(ΣWΣ+Z)MFG(ΣVΣ+Z):superscript𝑓𝑀superscriptsubscript𝐹𝐺superscriptΣ𝑊subscriptsuperscriptΣ𝑍𝑀superscriptsubscript𝐹𝐺superscriptΣ𝑉subscriptsuperscriptΣ𝑍f^{\ast}\colon MF_{G}^{\ast}(\Sigma^{W}\Sigma^{\infty}_{+}Z)\rightarrow MF_{G}%^{\ast}(\Sigma^{V}\Sigma^{\infty}_{+}Z)italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT : italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) → italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ). By MFG𝑀superscriptsubscript𝐹𝐺MF_{G}^{\star}italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT-linearity of fsuperscript𝑓f^{\ast}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and naturality of Thom classes, we can identify

t=f(1)=f(tW1tW)=tW1f(tW)=tW1tfW=tW1tV=tVW𝑡superscript𝑓1superscript𝑓superscriptsubscript𝑡𝑊1subscript𝑡𝑊superscriptsubscript𝑡𝑊1superscript𝑓subscript𝑡𝑊superscriptsubscript𝑡𝑊1subscript𝑡superscript𝑓𝑊superscriptsubscript𝑡𝑊1subscript𝑡𝑉subscript𝑡𝑉𝑊t=f^{\ast}(1)=f^{\ast}(t_{W}^{-1}t_{W})=t_{W}^{-1}f^{\ast}(t_{W})=t_{W}^{-1}t_%{f^{\ast}W}=t_{W}^{-1}t_{V}=t_{V-W}italic_t = italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 1 ) = italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ) = italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ) = italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_W end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT

in MFGWV(Z)𝑀superscriptsubscript𝐹𝐺𝑊𝑉𝑍MF_{G}^{W-V}(Z)italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W - italic_V end_POSTSUPERSCRIPT ( italic_Z ), and so t𝑡titalic_t is a tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-element as claimed.∎

4.2.3 Proposition.

Consider the J𝐽Jitalic_J-hom*omorphism

J:KF~(SZ)G0πGD(Σ+Z)×.J\colon\widetilde{KF}{}_{G}^{0}(SZ)\rightarrow\pi_{\star}^{G}D(\Sigma^{\infty}%_{+}Z)^{\times}.italic_J : over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT .

If ξKF~(SZ)G0\xi\in\widetilde{KF}{}_{G}^{0}(SZ)italic_ξ ∈ over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) satisfies aZξ=αRF(G)subscript𝑎𝑍𝜉𝛼𝑅𝐹𝐺a_{Z}\xi=\alpha\in RF(G)italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT italic_ξ = italic_α ∈ italic_R italic_F ( italic_G ), then J(ξ)παGD(Σ+Z)𝐽𝜉superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣ𝑍J(\xi)\in\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_J ( italic_ξ ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) is a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element.

Proof.

Write α=VW𝛼𝑉𝑊\alpha=V-Witalic_α = italic_V - italic_W for two G𝐺Gitalic_G-representations V𝑉Vitalic_V and W𝑊Witalic_W. By construction, J(ξ)𝐽𝜉J(\xi)italic_J ( italic_ξ ) is obtained by Thomifying a stable equivalence ZVZWsimilar-to-or-equalssubscript𝑍𝑉subscript𝑍𝑊Z_{V}\simeq Z_{W}italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ≃ italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT, i.e.an equivalence of vector bundles ZVUZWUsimilar-to-or-equalssubscript𝑍direct-sum𝑉𝑈subscript𝑍direct-sum𝑊𝑈Z_{V\oplus U}\simeq Z_{W\oplus U}italic_Z start_POSTSUBSCRIPT italic_V ⊕ italic_U end_POSTSUBSCRIPT ≃ italic_Z start_POSTSUBSCRIPT italic_W ⊕ italic_U end_POSTSUBSCRIPT for some G𝐺Gitalic_G-represenation U𝑈Uitalic_U. It follows from Lemma4.2.2 that J(ξ)𝐽𝜉J(\xi)italic_J ( italic_ξ ) is a t(VU)(WU)=tαsubscript𝑡direct-sum𝑉𝑈direct-sum𝑊𝑈subscript𝑡𝛼t_{(V\oplus U)-(W\oplus U)}=t_{\alpha}italic_t start_POSTSUBSCRIPT ( italic_V ⊕ italic_U ) - ( italic_W ⊕ italic_U ) end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element as claimed.∎

4.2.4 Corollary.

There exists a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element in παD(Σ+Z)subscript𝜋𝛼𝐷subscriptsuperscriptΣ𝑍\pi_{\alpha}D(\Sigma^{\infty}_{+}Z)italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) provided α𝛼\alphaitalic_α is in the kernel of RF(G)KFG0(Z)𝑅𝐹𝐺𝐾superscriptsubscript𝐹𝐺0𝑍RF(G)\rightarrow KF_{G}^{0}(Z)italic_R italic_F ( italic_G ) → italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ).

Proof.

By the cofiber sequence Z+S0SZsubscript𝑍superscript𝑆0𝑆𝑍Z_{+}\rightarrow S^{0}\rightarrow SZitalic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S italic_Z, if αKer(RF(G)KFG0(Z))𝛼Ker𝑅𝐹𝐺𝐾superscriptsubscript𝐹𝐺0𝑍\alpha\in\operatorname{Ker}(RF(G)\rightarrow KF_{G}^{0}(Z))italic_α ∈ roman_Ker ( italic_R italic_F ( italic_G ) → italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) ) then α=aZb𝛼subscript𝑎𝑍𝑏\alpha=a_{Z}bitalic_α = italic_a start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT italic_b for some bKF~(SZ)G0b\in\widetilde{KF}{}_{G}^{0}(SZ)italic_b ∈ over~ start_ARG italic_K italic_F end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ), and by 4.2.3 J(b)παGD(Σ+Z)𝐽𝑏superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣ𝑍J(b)\in\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_J ( italic_b ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) is our desired tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element.∎

4.3. Character theory

Suppose that G𝐺Gitalic_G is finite. In this case, we can use 4.2.4 to give criteria for D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) to admit a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of some order based only on the isotropy groups of Z𝑍Zitalic_Z. We will extend this to arbitrary G𝐺Gitalic_G-ring spectra in Subsection4.5 below.

We require some general equivariant localization theory.

4.3.1 Lemma.

Write ackGsubscriptack𝐺\mathcal{M}\mathrm{ack}_{G}caligraphic_M roman_ack start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT for the category of G𝐺Gitalic_G-Mackey functors, and for HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G write WGH=NGH/Hsubscript𝑊𝐺𝐻subscript𝑁𝐺𝐻𝐻W_{G}H=N_{G}H/Hitalic_W start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT italic_H = italic_N start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT italic_H / italic_H for the Weyl group. Then there are functors

τH:ackGod[WGH],τHM¯=co*ker(tr:KHM¯(G/K)M¯(G/H)):subscript𝜏𝐻formulae-sequencesubscriptack𝐺subscriptoddelimited-[]subscript𝑊𝐺𝐻subscript𝜏𝐻¯𝑀co*ker:trsubscriptdirect-sum𝐾𝐻¯𝑀𝐺𝐾¯𝑀𝐺𝐻\tau_{H}\colon\mathcal{M}\mathrm{ack}_{G}\rightarrow\mathcal{M}\mathrm{od}_{%\mathbb{Z}[W_{G}H]},\quad\tau_{H}\underline{M}=\operatorname{co*ker}\left(%\operatorname{tr}\colon\bigoplus_{K\subsetneq H}\underline{M}(G/K)\rightarrow%\underline{M}(G/H)\right)italic_τ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT : caligraphic_M roman_ack start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → caligraphic_M roman_od start_POSTSUBSCRIPT blackboard_Z [ italic_W start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT italic_H ] end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT under¯ start_ARG italic_M end_ARG = roman_co*ker ( roman_tr : ⨁ start_POSTSUBSCRIPT italic_K ⊊ italic_H end_POSTSUBSCRIPT under¯ start_ARG italic_M end_ARG ( italic_G / italic_K ) → under¯ start_ARG italic_M end_ARG ( italic_G / italic_H ) )

for which the following hold:

  1. (1)

    For any G𝐺Gitalic_G-Mackey functor M¯¯𝑀\underline{M}under¯ start_ARG italic_M end_ARG, there is a natural splitting

    [1|G|]M¯(G)[1|G|](H)(τHM¯)WGH,tensor-productdelimited-[]1𝐺¯𝑀𝐺tensor-productdelimited-[]1𝐺subscriptdirect-sum𝐻superscriptsubscript𝜏𝐻¯𝑀subscript𝑊𝐺𝐻\mathbb{Z}[\tfrac{1}{|G|}]\otimes\underline{M}(G)\cong\mathbb{Z}[\tfrac{1}{|G|%}]\otimes\bigoplus_{(H)}(\tau_{H}\underline{M})^{W_{G}H},blackboard_Z [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] ⊗ under¯ start_ARG italic_M end_ARG ( italic_G ) ≅ blackboard_Z [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] ⊗ ⨁ start_POSTSUBSCRIPT ( italic_H ) end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT under¯ start_ARG italic_M end_ARG ) start_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT italic_H end_POSTSUPERSCRIPT ,

    this sum being over the conjugacy classes of subgroups of G𝐺Gitalic_G.

  2. (2)

    If E𝐸Eitalic_E is a G𝐺Gitalic_G-spectrum, then the geometric fixed point maps ϕH:π0GEπ0ΦHE:subscriptitalic-ϕ𝐻superscriptsubscript𝜋0𝐺𝐸subscript𝜋0superscriptΦ𝐻𝐸\phi_{H}\colon\pi_{0}^{G}E\rightarrow\pi_{0}\Phi^{H}Eitalic_ϕ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_E → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_E factor through τH(π¯0E)subscript𝜏𝐻subscript¯𝜋0𝐸\tau_{H}(\underline{\pi}_{0}E)italic_τ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_E ), and induce isomorphisms

    [1|G|]τH(π¯0E)[1|G|]π0ΦHE.tensor-productdelimited-[]1𝐺subscript𝜏𝐻subscript¯𝜋0𝐸tensor-productdelimited-[]1𝐺subscript𝜋0superscriptΦ𝐻𝐸\mathbb{Z}[\tfrac{1}{|G|}]\otimes\tau_{H}(\underline{\pi}_{0}E)\cong\mathbb{Z}%[\tfrac{1}{|G|}]\otimes\pi_{0}\Phi^{H}E.blackboard_Z [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] ⊗ italic_τ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_E ) ≅ blackboard_Z [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] ⊗ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_E .
Proof.

See for example [Sch18, Section 3.4].∎

4.3.2 Lemma.

Let E𝐸Eitalic_E be a G𝐺Gitalic_G-spectrum. Fix uEG0(Z)𝑢subscriptsuperscript𝐸0𝐺𝑍u\in E^{0}_{G}(Z)italic_u ∈ italic_E start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ), and for HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G abbreviate uH=resHGusubscript𝑢𝐻subscriptsuperscriptres𝐺𝐻𝑢u_{H}=\operatorname{res}^{G}_{H}uitalic_u start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT italic_u. Suppose that

ZHuH=0superscript𝑍𝐻subscript𝑢𝐻0Z^{H}\neq\emptyset\implies u_{H}=0italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅ ⟹ italic_u start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0

for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. Then u𝑢uitalic_u has finite order dividing a power of |G|𝐺|G|| italic_G |.

Proof.

As Z𝑍Zitalic_Z is compact we have ΦH𝒮pG(Σ+Z,E)𝒮pG(Σ+(ZH),ΦHE)superscriptΦ𝐻𝒮superscriptp𝐺subscriptsuperscriptΣ𝑍𝐸𝒮superscriptp𝐺subscriptsuperscriptΣsuperscript𝑍𝐻superscriptΦ𝐻𝐸\Phi^{H}\mathcal{S}\mathrm{p}^{G}(\Sigma^{\infty}_{+}Z,E)\cong\mathcal{S}%\mathrm{p}^{G}(\Sigma^{\infty}_{+}(Z^{H}),\Phi^{H}E)roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT caligraphic_S roman_p start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z , italic_E ) ≅ caligraphic_S roman_p start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) , roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_E ), and so Lemma4.3.1 implies

EG0(Z)[1|G|]HG(ΦHE)0(ZH)[1|G|].subscriptsuperscript𝐸0𝐺𝑍delimited-[]1𝐺subscriptproduct𝐻𝐺superscriptsuperscriptΦ𝐻𝐸0superscript𝑍𝐻delimited-[]1𝐺E^{0}_{G}(Z)[\tfrac{1}{|G|}]\subset\prod_{H\subset G}(\Phi^{H}E)^{0}(Z^{H})[%\tfrac{1}{|G|}].italic_E start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] ⊂ ∏ start_POSTSUBSCRIPT italic_H ⊂ italic_G end_POSTSUBSCRIPT ( roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_E ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ] .

It thus suffices to show that uH=0subscript𝑢𝐻0u_{H}=0italic_u start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 in (ΦHE)0(ZH)superscriptsuperscriptΦ𝐻𝐸0superscript𝑍𝐻(\Phi^{H}E)^{0}(Z^{H})( roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_E ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. If ZH=superscript𝑍𝐻Z^{H}=\emptysetitalic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT = ∅ then this group vanishes. Otherwise uH=0subscript𝑢𝐻0u_{H}=0italic_u start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 by assumption. In either case this shows that u=0𝑢0u=0italic_u = 0 in EG0(Z)[1|G|]subscriptsuperscript𝐸0𝐺𝑍delimited-[]1𝐺E^{0}_{G}(Z)[\tfrac{1}{|G|}]italic_E start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ], and so u𝑢uitalic_u has finite order dividing a power of |G|𝐺|G|| italic_G |.∎

Combining these two lemmas leads to the following.

4.3.3 Proposition.

A class αKFG0(Z)𝛼𝐾superscriptsubscript𝐹𝐺0𝑍\alpha\in KF_{G}^{0}(Z)italic_α ∈ italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) has finite order if and only if ZCαC=0superscript𝑍𝐶subscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow\alpha_{C}=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G, in which case its order divides a power of |G|𝐺|G|| italic_G |.

Proof.

First suppose that ZCαC=0superscript𝑍𝐶subscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow\alpha_{C}=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. If ZHsuperscript𝑍𝐻Z^{H}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅, then ZCsuperscript𝑍𝐶Z^{C}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ for all cyclic CH𝐶𝐻C\subset Hitalic_C ⊂ italic_H. It follows that αC=0subscript𝛼𝐶0\alpha_{C}=0italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic CH𝐶𝐻C\subset Hitalic_C ⊂ italic_H, and as a representation is determined by its restriction to cyclic subgroups we deduce αH=0subscript𝛼𝐻0\alpha_{H}=0italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0. Thus Z𝑍Zitalic_Z satisfies ZHαH=0superscript𝑍𝐻subscript𝛼𝐻0Z^{H}\neq\emptyset\Rightarrow\alpha_{H}=0italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅ ⇒ italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. By Lemma4.3.2, this implies that αKFG0(Z)𝛼𝐾superscriptsubscript𝐹𝐺0𝑍\alpha\in KF_{G}^{0}(Z)italic_α ∈ italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) has finite order dividing a power of |G|𝐺|G|| italic_G |.

Conversely, if ZCsuperscript𝑍𝐶Z^{C}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅, then there is some equivariant map p:G/CZ:𝑝𝐺𝐶𝑍p\colon G/C\rightarrow Zitalic_p : italic_G / italic_C → italic_Z. This must satisfy p(α)=αCKFG0(G/C)RF(C)superscript𝑝𝛼subscript𝛼𝐶𝐾superscriptsubscript𝐹𝐺0𝐺𝐶𝑅𝐹𝐶p^{*}(\alpha)=\alpha_{C}\in KF_{G}^{0}(G/C)\cong RF(C)italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_α ) = italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ∈ italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_G / italic_C ) ≅ italic_R italic_F ( italic_C ). It follows that if α𝛼\alphaitalic_α has finite order, then so does αCRF(C)subscript𝛼𝐶𝑅𝐹𝐶\alpha_{C}\in RF(C)italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ∈ italic_R italic_F ( italic_C ), implying that αC=0subscript𝛼𝐶0\alpha_{C}=0italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 as RF(C)𝑅𝐹𝐶RF(C)italic_R italic_F ( italic_C ) is torsion-free.∎

4.3.4 Corollary.

If ZCαC=0superscript𝑍𝐶subscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow\alpha_{C}=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G, then D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order dividing a power of |G|𝐺|G|| italic_G |.

Proof.

Combine 4.3.3 and 4.2.4.∎

4.4. \mathcal{F}caligraphic_F-nilpotence

Our next goal is to upgrade 4.3.4 to arbitrary G𝐺Gitalic_G-ring spectra. To do this we will make use of the nilpotence machinery developed by Mathew–Nauman–Noel in [MNN17, MNN19]. In this subsection we extract the parts of this theory that we will need.

Given a subgroup HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G, abbreviate

G/H+=Σ+G/H.𝐺subscript𝐻subscriptsuperscriptΣ𝐺𝐻G/H_{+}=\Sigma^{\infty}_{+}G/H.italic_G / italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_G / italic_H .

Let \mathcal{F}caligraphic_F be a family of subgroups of G𝐺Gitalic_G, i.e.a collection of subgroups closed under subconjugacy.

4.4.1 Definition ([MNN17, Definition 6.36]).

A G𝐺Gitalic_G-spectrum X𝑋Xitalic_X is \mathcal{F}caligraphic_F-nilpotent if it lies in the thick tensor-product\otimes-ideal generated by G/H+𝐺subscript𝐻G/H_{+}italic_G / italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT for H𝐻H\in\mathcal{F}italic_H ∈ caligraphic_F.\triangleleft

Up to G𝐺Gitalic_G-hom*otopy equivalence, there is a unique G𝐺Gitalic_G-space E𝐸E\mathcal{F}italic_E caligraphic_F characterized by

EH{,H,,H.similar-to-or-equals𝐸superscript𝐻cases𝐻𝐻E\mathcal{F}^{H}\simeq\begin{cases}\emptyset,&H\notin\mathcal{F},\\\ast,&H\in\mathcal{F}.\end{cases}italic_E caligraphic_F start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL ∅ , end_CELL start_CELL italic_H ∉ caligraphic_F , end_CELL end_ROW start_ROW start_CELL ∗ , end_CELL start_CELL italic_H ∈ caligraphic_F . end_CELL end_ROW

A convenient model for this space is given as follows. Write

G/=HG/H.𝐺subscriptcoproduct𝐻𝐺𝐻G/\mathcal{F}=\coprod_{H\in\mathcal{F}}G/H.italic_G / caligraphic_F = ∐ start_POSTSUBSCRIPT italic_H ∈ caligraphic_F end_POSTSUBSCRIPT italic_G / italic_H .

Then E𝐸E\mathcal{F}italic_E caligraphic_F is equivalent to an infinite join of copies of G/𝐺G/\mathcal{F}italic_G / caligraphic_F:

E=colim(G/G/G/G/G/G/).𝐸colim𝐺𝐺𝐺𝐺𝐺𝐺E\mathcal{F}=\operatorname*{colim}\left(G/\mathcal{F}\rightarrow G/\mathcal{F}%\ast G/\mathcal{F}\rightarrow G/\mathcal{F}\ast G/\mathcal{F}\ast G/\mathcal{F%}\rightarrow\cdots\right).italic_E caligraphic_F = roman_colim ( italic_G / caligraphic_F → italic_G / caligraphic_F ∗ italic_G / caligraphic_F → italic_G / caligraphic_F ∗ italic_G / caligraphic_F ∗ italic_G / caligraphic_F → ⋯ ) .

Write E<m=(G/)m1𝐸superscriptabsent𝑚superscript𝐺absent𝑚1E\mathcal{F}^{<m}=(G/\mathcal{F})^{\ast m-1}italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT = ( italic_G / caligraphic_F ) start_POSTSUPERSCRIPT ∗ italic_m - 1 end_POSTSUPERSCRIPT for the resulting (m1)𝑚1(m-1)( italic_m - 1 )-skeleton of E𝐸E\mathcal{F}italic_E caligraphic_F. This satisfies

(E<m)H((G/)H)m1{,H,Sm1,H.similar-to-or-equalssuperscript𝐸superscriptabsent𝑚𝐻superscriptsuperscript𝐺𝐻absent𝑚1similar-to-or-equalscases𝐻superscript𝑆𝑚1𝐻(E\mathcal{F}^{<m})^{H}\simeq((G/\mathcal{F})^{H})^{\ast m-1}\simeq\begin{%cases}\emptyset,&H\notin\mathcal{F},\\\bigvee S^{m-1},&H\in\mathcal{F}.\end{cases}( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≃ ( ( italic_G / caligraphic_F ) start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ italic_m - 1 end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL ∅ , end_CELL start_CELL italic_H ∉ caligraphic_F , end_CELL end_ROW start_ROW start_CELL ⋁ italic_S start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_H ∈ caligraphic_F . end_CELL end_ROW

We also abbreviate E+<m=Σ+E<m𝐸subscriptsuperscriptabsent𝑚subscriptsuperscriptΣ𝐸superscriptabsent𝑚E\mathcal{F}^{<m}_{+}=\Sigma^{\infty}_{+}E\mathcal{F}^{<m}italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT.

4.4.2 Lemma.

Let X𝑋Xitalic_X be a G𝐺Gitalic_G-spectrum, and consider the following statements.

  1. (1)

    X𝑋Xitalic_X is \mathcal{F}caligraphic_F-nilpotent.

  2. (2)

    E+<mXXtensor-product𝐸superscriptsubscriptabsent𝑚𝑋𝑋E\mathcal{F}_{+}^{<m}\otimes X\rightarrow Xitalic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ⊗ italic_X → italic_X admits a section for some m𝑚mitalic_m.

  3. (3)

    X𝒮pG(E+<m,X)D(E+<m)X𝑋𝒮superscriptp𝐺𝐸superscriptsubscriptabsent𝑚𝑋similar-to-or-equalstensor-product𝐷𝐸superscriptsubscriptabsent𝑚𝑋X\rightarrow\mathcal{S}\mathrm{p}^{G}(E\mathcal{F}_{+}^{<m},X)\simeq D(E%\mathcal{F}_{+}^{<m})\otimes Xitalic_X → caligraphic_S roman_p start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT , italic_X ) ≃ italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ⊗ italic_X admits a retraction for some m𝑚mitalic_m.

  4. (4)

    ΦHX0HsuperscriptΦ𝐻𝑋0𝐻\Phi^{H}X\neq 0\Rightarrow H\in\mathcal{F}roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_H ∈ caligraphic_F.

Always (1)\Leftrightarrow(2)\Leftrightarrow(3)\Rightarrow(4). If X𝑋Xitalic_X is finite or a G𝐺Gitalic_G-ring spectrum, then (4)\Rightarrow(2).

Proof.

(1)\Leftrightarrow(2)\Leftrightarrow(3): See [MNN19, Theorem 2.25, Remark 2.27].

(2)\Rightarrow(4): If H𝐻H\notin\mathcal{F}italic_H ∉ caligraphic_F then

ΦH(E+<mX)ΦH(E+<m)ΦHX0ΦHX0.similar-to-or-equalssuperscriptΦ𝐻tensor-product𝐸superscriptsubscriptabsent𝑚𝑋tensor-productsuperscriptΦ𝐻𝐸superscriptsubscriptabsent𝑚superscriptΦ𝐻𝑋similar-to-or-equalstensor-product0superscriptΦ𝐻𝑋similar-to-or-equals0\Phi^{H}(E\mathcal{F}_{+}^{<m}\otimes X)\simeq\Phi^{H}(E\mathcal{F}_{+}^{<m})%\otimes\Phi^{H}X\simeq 0\otimes\Phi^{H}X\simeq 0.roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ⊗ italic_X ) ≃ roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ⊗ roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≃ 0 ⊗ roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≃ 0 .

Thus if X𝑋Xitalic_X is a retract of E+<mXtensor-product𝐸superscriptsubscriptabsent𝑚𝑋E\mathcal{F}_{+}^{<m}\otimes Xitalic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ⊗ italic_X then ΦHX0similar-to-or-equalssuperscriptΦ𝐻𝑋0\Phi^{H}X\simeq 0roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≃ 0 for H𝐻H\notin\mathcal{F}italic_H ∉ caligraphic_F.

(4)\Rightarrow(2) when X𝑋Xitalic_X is finite: If ΦHX0HsuperscriptΦ𝐻𝑋0𝐻\Phi^{H}X\neq 0\Rightarrow H\in\mathcal{F}roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_H ∈ caligraphic_F, then the map E+XXtensor-product𝐸subscript𝑋𝑋E\mathcal{F}_{+}\otimes X\rightarrow Xitalic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ⊗ italic_X → italic_X is an equivalence. As X𝑋Xitalic_X is finite, the inverse XE+XcolimnE+<mX𝑋tensor-product𝐸subscript𝑋similar-to-or-equalssubscriptcolim𝑛tensor-product𝐸superscriptsubscriptabsent𝑚𝑋X\rightarrow E\mathcal{F}_{+}\otimes X\simeq\operatorname*{colim}_{n%\rightarrow\infty}E\mathcal{F}_{+}^{<m}\otimes Xitalic_X → italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ⊗ italic_X ≃ roman_colim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ⊗ italic_X factors through some E+<mXtensor-product𝐸superscriptsubscriptabsent𝑚𝑋E\mathcal{F}_{+}^{<m}\otimes Xitalic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ⊗ italic_X.

(4)\Rightarrow(2) when X𝑋Xitalic_X is a ring: See [MNN17, Theorem 6.41].∎

This allows for the following explicit quantification of \mathcal{F}caligraphic_F-nilpotence, see [MNN17, Definition 6.36] and [MNN19, Proposition 2.26]

4.4.3 Definition.

The \mathcal{F}caligraphic_F-exponent exp(X)subscript𝑋\exp_{\mathcal{F}}(X)roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_X ) of an \mathcal{F}caligraphic_F-nilpotent G𝐺Gitalic_G-spectrum X𝑋Xitalic_X is the minimal m𝑚mitalic_m for which XD(E+<m)X𝑋tensor-product𝐷𝐸superscriptsubscriptabsent𝑚𝑋X\rightarrow D(E\mathcal{F}_{+}^{<m})\otimes Xitalic_X → italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ⊗ italic_X admits a retraction.\triangleleft

If R𝑅Ritalic_R is a \mathcal{F}caligraphic_F-nilpotent G𝐺Gitalic_G-ring spectrum with exp(R)msubscript𝑅𝑚\exp_{\mathcal{F}}(R)\leq mroman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_R ) ≤ italic_m, then precomposing the guaranteed retraction D(E+<m)RRtensor-product𝐷𝐸superscriptsubscriptabsent𝑚𝑅𝑅D(E\mathcal{F}_{+}^{<m})\otimes R\rightarrow Ritalic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ⊗ italic_R → italic_R with the unit D(E+<m)D(E+<m)R𝐷𝐸superscriptsubscriptabsent𝑚tensor-product𝐷𝐸superscriptsubscriptabsent𝑚𝑅D(E\mathcal{F}_{+}^{<m})\rightarrow D(E\mathcal{F}_{+}^{<m})\otimes Ritalic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ⊗ italic_R provides a map

r:D(E+<m)R:𝑟𝐷𝐸superscriptsubscriptabsent𝑚𝑅r\colon D(E\mathcal{F}_{+}^{<m})\rightarrow Ritalic_r : italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_R

satisfying r(1)=1𝑟11r(1)=1italic_r ( 1 ) = 1. This map is not guaranteed to be multiplicative. It is possible to show by a formal argument that the composite D(E+<2m)D(E+<m)R𝐷𝐸superscriptsubscriptabsent2𝑚𝐷𝐸superscriptsubscriptabsent𝑚𝑅D(E\mathcal{F}_{+}^{<2m})\rightarrow D(E\mathcal{F}_{+}^{<m})\rightarrow Ritalic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < 2 italic_m end_POSTSUPERSCRIPT ) → italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_R is multiplicative, and that although the composite D(E+<m+1)D(E+<m)R𝐷𝐸superscriptsubscriptabsent𝑚1𝐷𝐸superscriptsubscriptabsent𝑚𝑅D(E\mathcal{F}_{+}^{<m+1})\rightarrow D(E\mathcal{F}_{+}^{<m})\rightarrow Ritalic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m + 1 end_POSTSUPERSCRIPT ) → italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_R may fail to be multiplicative the induced map on hom*otopy groups preserves invertible elements. However, in our particular context it turns out we can do just a little better.

4.4.4 Lemma.

Let R𝑅Ritalic_R be a G𝐺Gitalic_G-ring spectrum. Fix a map r:D(E+<m)R:𝑟𝐷𝐸superscriptsubscriptabsent𝑚𝑅r\colon D(E\mathcal{F}_{+}^{<m})\rightarrow Ritalic_r : italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_R satisfying r(1)=1𝑟11r(1)=1italic_r ( 1 ) = 1, and fix tπαGD(E+<m)𝑡superscriptsubscript𝜋𝛼𝐺𝐷𝐸superscriptsubscriptabsent𝑚t\in\pi_{\alpha}^{G}D(E\mathcal{F}_{+}^{<m})italic_t ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ).

  1. (1)

    If t𝑡titalic_t lifts tαπαG(MFGD(E+<m))subscript𝑡𝛼superscriptsubscript𝜋𝛼𝐺tensor-product𝑀subscript𝐹𝐺𝐷𝐸superscriptsubscriptabsent𝑚t_{\alpha}\in\pi_{\alpha}^{G}(MF_{G}\otimes D(E\mathcal{F}_{+}^{<m}))italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ), then r(t)𝑟𝑡r(t)italic_r ( italic_t ) lifts tαπαG(MFGR)subscript𝑡𝛼superscriptsubscript𝜋𝛼𝐺tensor-product𝑀subscript𝐹𝐺𝑅t_{\alpha}\in\pi_{\alpha}^{G}(MF_{G}\otimes R)italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_R ).

  2. (2)

    If t𝑡titalic_t is invertible and m2𝑚2m\geq 2italic_m ≥ 2, then r(t)παGR𝑟𝑡superscriptsubscript𝜋𝛼𝐺𝑅r(t)\in\pi_{\alpha}^{G}Ritalic_r ( italic_t ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R is invertible.

In particular, if m2𝑚2m\geq 2italic_m ≥ 2 then r𝑟ritalic_r preserves tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements.

Proof.

(1)This holds as the maps D(E+<m)MFGD(E+<m)𝐷𝐸superscriptsubscriptabsent𝑚tensor-product𝑀subscript𝐹𝐺𝐷𝐸superscriptsubscriptabsent𝑚D(E\mathcal{F}_{+}^{<m})\rightarrow MF_{G}\otimes D(E\mathcal{F}_{+}^{<m})italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) and RMFGR𝑅tensor-product𝑀subscript𝐹𝐺𝑅R\rightarrow MF_{G}\otimes Ritalic_R → italic_M italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_R are defined using only the unit maps of D(E+<m)𝐷𝐸superscriptsubscriptabsent𝑚D(E\mathcal{F}_{+}^{<m})italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) and R𝑅Ritalic_R, and r𝑟ritalic_r is compatible with these.

(2)It suffices to show that ΦHr(t)superscriptΦ𝐻𝑟𝑡\Phi^{H}r(t)roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_r ( italic_t ) is invertible for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. Abbreviate W=(E<m)H𝑊superscript𝐸superscriptabsent𝑚𝐻W=(E\mathcal{F}^{<m})^{H}italic_W = ( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT. As tπαGD(E+<m)𝑡superscriptsubscript𝜋𝛼𝐺𝐷𝐸superscriptsubscriptabsent𝑚t\in\pi_{\alpha}^{G}D(E\mathcal{F}_{+}^{<m})italic_t ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) is invertible, necessarily ΦHtπαHD(Σ+W)superscriptΦ𝐻𝑡subscript𝜋superscript𝛼𝐻𝐷subscriptsuperscriptΣ𝑊\Phi^{H}t\in\pi_{\alpha^{H}}D(\Sigma^{\infty}_{+}W)roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_t ∈ italic_π start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_W ) is invertible, implying also |αH|=0superscript𝛼𝐻0|\alpha^{H}|=0| italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | = 0. It now suffices to prove the nonequivariant assertion that if T=ΦHR𝑇superscriptΦ𝐻𝑅T=\Phi^{H}Ritalic_T = roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_R is a ring spectrum, f=ΦHr:D(Σ+W)T:𝑓superscriptΦ𝐻𝑟𝐷subscriptsuperscriptΣ𝑊𝑇f=\Phi^{H}r\colon D(\Sigma^{\infty}_{+}W)\rightarrow Titalic_f = roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_r : italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_W ) → italic_T satisfies f(1)=1𝑓11f(1)=1italic_f ( 1 ) = 1, and s=ΦHtπ0D(Σ+W)𝑠superscriptΦ𝐻𝑡subscript𝜋0𝐷subscriptsuperscriptΣ𝑊s=\Phi^{H}t\in\pi_{0}D(\Sigma^{\infty}_{+}W)italic_s = roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_t ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_W ) is invertible, then f(s)π0T𝑓𝑠subscript𝜋0𝑇f(s)\in\pi_{0}Titalic_f ( italic_s ) ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T is invertible.

If H𝐻H\notin\mathcal{F}italic_H ∉ caligraphic_F, then W=𝑊W=\emptysetitalic_W = ∅ and there is nothing to check. If H𝐻H\in\mathcal{F}italic_H ∈ caligraphic_F, then there is an equivalence WSm1similar-to-or-equals𝑊superscript𝑆𝑚1W\simeq\bigvee S^{m-1}italic_W ≃ ⋁ italic_S start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT. Choosing such an equivalence, the unit SD(Σ+W)𝑆𝐷subscriptsuperscriptΣ𝑊S\rightarrow D(\Sigma^{\infty}_{+}W)italic_S → italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_W ) splits off giving

D(Σ+W)SS(m1).similar-to-or-equals𝐷subscriptsuperscriptΣ𝑊direct-sum𝑆superscript𝑆𝑚1D(\Sigma^{\infty}_{+}W)\simeq S\oplus\bigvee S^{-(m-1)}.italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_W ) ≃ italic_S ⊕ ⋁ italic_S start_POSTSUPERSCRIPT - ( italic_m - 1 ) end_POSTSUPERSCRIPT .

The unit s𝑠sitalic_s must appear in this splitting as s=(±1,ϵ)𝑠plus-or-minus1italic-ϵs=(\pm 1,\epsilon)italic_s = ( ± 1 , italic_ϵ ) for some ϵπ0S(m1)πm1Sitalic-ϵsubscript𝜋0superscript𝑆𝑚1direct-sumsubscript𝜋𝑚1𝑆\epsilon\in\pi_{0}\bigvee S^{-(m-1)}\cong\bigoplus\pi_{m-1}Sitalic_ϵ ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⋁ italic_S start_POSTSUPERSCRIPT - ( italic_m - 1 ) end_POSTSUPERSCRIPT ≅ ⨁ italic_π start_POSTSUBSCRIPT italic_m - 1 end_POSTSUBSCRIPT italic_S. As f(1)=1𝑓11f(1)=1italic_f ( 1 ) = 1, it follows that f(s)=±1+g(ϵ)𝑓𝑠plus-or-minus1𝑔italic-ϵf(s)=\pm 1+g(\epsilon)italic_f ( italic_s ) = ± 1 + italic_g ( italic_ϵ ) for some g:S(m1)T:𝑔superscript𝑆𝑚1𝑇g\colon\bigvee S^{-(m-1)}\rightarrow Titalic_g : ⋁ italic_S start_POSTSUPERSCRIPT - ( italic_m - 1 ) end_POSTSUPERSCRIPT → italic_T. As m2𝑚2m\geq 2italic_m ≥ 2, Nishida nilpotence [Nis73] implies that ϵitalic-ϵ\epsilonitalic_ϵ is tensor-product\otimes-nilpotent, and thus g(ϵ)𝑔italic-ϵg(\epsilon)italic_g ( italic_ϵ ) is nilpotent. This implies that f(s)𝑓𝑠f(s)italic_f ( italic_s ) is invertible as claimed.∎

4.4.5 Remark.

The condition m2𝑚2m\geq 2italic_m ≥ 2 in Lemma4.4.4 is necessary. For example, let G=C2𝐺subscript𝐶2G=C_{2}italic_G = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and write S¯1=S(2σ)superscript¯𝑆1𝑆2𝜎\underline{S}^{1}=S(2\sigma)under¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_S ( 2 italic_σ ) for the 1111-sphere with its free antipodal action. Then R=D(Σ+S¯1)[12]𝑅𝐷subscriptsuperscriptΣsuperscript¯𝑆1delimited-[]12R=D(\Sigma^{\infty}_{+}\underline{S}^{1})[\tfrac{1}{2}]italic_R = italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT under¯ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) [ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ] satisfies exp{e}(R)=1subscript𝑒𝑅1\exp_{\{e\}}(R)=1roman_exp start_POSTSUBSCRIPT { italic_e } end_POSTSUBSCRIPT ( italic_R ) = 1, but π1σC2R=0superscriptsubscript𝜋1𝜎subscript𝐶2𝑅0\pi_{1-\sigma}^{C_{2}}R=0italic_π start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_R = 0 and so every map s:D(C2+)R:𝑠𝐷subscript𝐶limit-from2𝑅s\colon D(C_{2+})\rightarrow Ritalic_s : italic_D ( italic_C start_POSTSUBSCRIPT 2 + end_POSTSUBSCRIPT ) → italic_R sends the invertible element uσπ1σC2D(C2+)π0Ssubscript𝑢𝜎superscriptsubscript𝜋1𝜎subscript𝐶2𝐷subscript𝐶limit-from2subscript𝜋0𝑆u_{\sigma}\in\pi_{1-\sigma}^{C_{2}}D(C_{2+})\cong\pi_{0}S\cong\mathbb{Z}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_D ( italic_C start_POSTSUBSCRIPT 2 + end_POSTSUBSCRIPT ) ≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S ≅ blackboard_Z to zero. On the other hand, if m=1𝑚1m=1italic_m = 1 then the ϵitalic-ϵ\epsilonitalic_ϵ appearing in the proof of Lemma4.4.4 must be divisible by 2222, and so the proof goes through provided each ΦHRsuperscriptΦ𝐻𝑅\Phi^{H}Rroman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_R is 2222-complete.\triangleleft

4.5. Existence of tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements

Fix αRF(G)𝛼𝑅𝐹𝐺\alpha\in RF(G)italic_α ∈ italic_R italic_F ( italic_G ) of virtual dimension zero. We can now formulate and prove our general existence theorems on tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements and tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self maps. We first introduce a convenient definition.

4.5.1 Definition.

The \mathcal{F}caligraphic_F-order ord(α)subscriptord𝛼\operatorname{ord}_{\mathcal{F}}(\alpha)roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) of α𝛼\alphaitalic_α is the minimal m𝑚mitalic_m for which α0𝛼0\alpha\neq 0italic_α ≠ 0 in KFG0(E<m+1)𝐾superscriptsubscript𝐹𝐺0𝐸superscriptabsent𝑚1KF_{G}^{0}(E\mathcal{F}^{<m+1})italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m + 1 end_POSTSUPERSCRIPT ), with ord(α)=subscriptord𝛼\operatorname{ord}_{\mathcal{F}}(\alpha)=\inftyroman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) = ∞ if no such m𝑚mitalic_m exists.\triangleleft

In other words,

mord(α)α=0inKFG0(E<m),formulae-sequence𝑚subscriptord𝛼iff𝛼0in𝐾superscriptsubscript𝐹𝐺0𝐸superscriptabsent𝑚m\leq\operatorname{ord}_{\mathcal{F}}(\alpha)\quad\iff\quad\alpha=0\text{ in }%KF_{G}^{0}(E\mathcal{F}^{<m}),italic_m ≤ roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) ⇔ italic_α = 0 in italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) ,

and ord(α)=msubscriptord𝛼𝑚\operatorname{ord}_{\mathcal{F}}(\alpha)=mroman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) = italic_m precisely when α𝛼\alphaitalic_α is detected on the m𝑚mitalic_m-line of the equivariant Atiyah–Hirzebruch spectral sequence

HG(E;π¯KFG)KFG(E).subscriptsuperscript𝐻𝐺𝐸subscript¯𝜋𝐾subscript𝐹𝐺𝐾superscriptsubscript𝐹𝐺𝐸H^{\ast}_{G}(E\mathcal{F};\underline{\pi}_{\ast}KF_{G})\Rightarrow KF_{G}^{%\ast}(E\mathcal{F}).italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_E caligraphic_F ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ⇒ italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_E caligraphic_F ) .

The most familiar case is when ={e}𝑒\mathcal{F}=\{e\}caligraphic_F = { italic_e }, where E=EG𝐸𝐸𝐺E\mathcal{F}=EGitalic_E caligraphic_F = italic_E italic_G and this is equivalent to the nonequivariant Atiyah–Hirzebruch spectral sequence for KFBG𝐾superscript𝐹𝐵𝐺KF^{\ast}BGitalic_K italic_F start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_B italic_G. Observe that ord(α)0subscriptord𝛼0\operatorname{ord}_{\mathcal{F}}(\alpha)\geq 0roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) ≥ 0, with equality if and only if αH0subscript𝛼𝐻0\alpha_{H}\neq 0italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≠ 0 for some H𝐻H\in\mathcal{F}italic_H ∈ caligraphic_F. Thus if we define the family

(α)={HG:αH=0},𝛼conditional-set𝐻𝐺subscript𝛼𝐻0\mathcal{F}(\alpha)=\{H\subset G:\alpha_{H}=0\},caligraphic_F ( italic_α ) = { italic_H ⊂ italic_G : italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 } ,

then ord(α)>0subscriptord𝛼0\operatorname{ord}_{\mathcal{F}}(\alpha)>0roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_α ) > 0 if and only if (α)𝛼\mathcal{F}\subset\mathcal{F}(\alpha)caligraphic_F ⊂ caligraphic_F ( italic_α ). This refines to the following.

4.5.2 Lemma.

If (α)𝛼\mathcal{F}\subset\mathcal{F}(\alpha)caligraphic_F ⊂ caligraphic_F ( italic_α ), then the sequence {ord(|G|kα):k0}:subscriptordsuperscript𝐺𝑘𝛼𝑘0\{\operatorname{ord}_{\mathcal{F}}(|G|^{k}\alpha):k\geq 0\}{ roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( | italic_G | start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_α ) : italic_k ≥ 0 } is unbounded.

Proof.

The claim is that for all m0𝑚0m\geq 0italic_m ≥ 0 there exists some k0𝑘0k\geq 0italic_k ≥ 0 for which mord(|G|kα)𝑚subscriptordsuperscript𝐺𝑘𝛼m\leq\operatorname{ord}_{\mathcal{F}}(|G|^{k}\alpha)italic_m ≤ roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( | italic_G | start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_α ), that is for which |G|kα=0superscript𝐺𝑘𝛼0|G|^{k}\alpha=0| italic_G | start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_α = 0 in KFG0(E<m)𝐾superscriptsubscript𝐹𝐺0𝐸superscriptabsent𝑚KF_{G}^{0}(E\mathcal{F}^{<m})italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ). As (α)𝛼\mathcal{F}\subset\mathcal{F}(\alpha)caligraphic_F ⊂ caligraphic_F ( italic_α ) we have (E<m)HαH=0superscript𝐸superscriptabsent𝑚𝐻subscript𝛼𝐻0(E\mathcal{F}^{<m})^{H}\neq\emptyset\Rightarrow\alpha_{H}=0( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅ ⇒ italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0, and so this follows from 4.3.3.∎

4.5.3 Lemma.

Suppose that X𝑋Xitalic_X is finite or a G𝐺Gitalic_G-ring spectrum. Then X𝑋Xitalic_X is (α)𝛼\mathcal{F}(\alpha)caligraphic_F ( italic_α )-nilpotent if and only if ΦCX0αC=0superscriptΦ𝐶𝑋0subscript𝛼𝐶0\Phi^{C}X\neq 0\Rightarrow\alpha_{C}=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G.

Proof.

Suppose that ΦCX0αC=0superscriptΦ𝐶𝑋0subscript𝛼𝐶0\Phi^{C}X\neq 0\Rightarrow\alpha_{C}=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. As X𝑋Xitalic_X is finite or a G𝐺Gitalic_G-ring spectrum, the collection {HG:ΦHX0}conditional-set𝐻𝐺superscriptΦ𝐻𝑋0\{H\subset G:\Phi^{H}X\neq 0\}{ italic_H ⊂ italic_G : roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≠ 0 } forms a family of subgroups of G𝐺Gitalic_G closed under subconjugacy. It follows that ΦHX0(CHcyclicαC=0)superscriptΦ𝐻𝑋0𝐶𝐻cyclicsubscript𝛼𝐶0\Phi^{H}X\neq 0\Rightarrow(C\subset H\text{ cyclic}\Rightarrow\alpha_{C}=0)roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ ( italic_C ⊂ italic_H cyclic ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 ). As a representation is determined by its restriction to cyclic subgroups we deduce ΦHX0αH=0superscriptΦ𝐻𝑋0subscript𝛼𝐻0\Phi^{H}X\neq 0\Rightarrow\alpha_{H}=0roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0 for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. Thus X𝑋Xitalic_X is (α)𝛼\mathcal{F}(\alpha)caligraphic_F ( italic_α )-nilpotent by Lemma4.4.2, which also gives the converse.∎

We now give the main theorem of this section. Fix a family (α)𝛼\mathcal{F}\subset\mathcal{F}(\alpha)caligraphic_F ⊂ caligraphic_F ( italic_α ).

4.5.4 Theorem.

Let R𝑅Ritalic_R be a \mathcal{F}caligraphic_F-nilpotent G𝐺Gitalic_G-ring spectrum, and suppose that ord(nα)max(2,exp(R))subscriptord𝑛𝛼2subscript𝑅\operatorname{ord}_{\mathcal{F}}(n\alpha)\geq\max(2,\exp_{\mathcal{F}}(R))roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_n italic_α ) ≥ roman_max ( 2 , roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_R ) ). Then R𝑅Ritalic_R admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order n𝑛nitalic_n. In particular, if ΦCR0αC=0superscriptΦ𝐶𝑅0subscript𝛼𝐶0\Phi^{C}R\neq 0\Rightarrow\alpha_{C}=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R ≠ 0 ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G, then R𝑅Ritalic_R admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order dividing a power of |G|𝐺|G|| italic_G |.

Proof.

Abbreviate m=max(2,exp(R))𝑚2subscript𝑅m=\max(2,\exp_{\mathcal{F}}(R))italic_m = roman_max ( 2 , roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_R ) ). As mord(nα)𝑚subscriptord𝑛𝛼m\leq\operatorname{ord}_{\mathcal{F}}(n\alpha)italic_m ≤ roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_n italic_α ), we have nα=0𝑛𝛼0n\alpha=0italic_n italic_α = 0 in KFG0(E<m)𝐾superscriptsubscript𝐹𝐺0𝐸superscriptabsent𝑚KF_{G}^{0}(E\mathcal{F}^{<m})italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E caligraphic_F start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ). By 4.2.4, there is a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element tπnαGD(E+<m)𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝐷𝐸superscriptsubscriptabsent𝑚t\in\pi_{n\alpha}^{G}D(E\mathcal{F}_{+}^{<m})italic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ). As mexp(R)𝑚subscript𝑅m\geq\exp_{\mathcal{F}}(R)italic_m ≥ roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_R ), there is a map r:D(E+<m)R:𝑟𝐷𝐸superscriptsubscriptabsent𝑚𝑅r\colon D(E\mathcal{F}_{+}^{<m})\rightarrow Ritalic_r : italic_D ( italic_E caligraphic_F start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT < italic_m end_POSTSUPERSCRIPT ) → italic_R satisfying r(1)=1𝑟11r(1)=1italic_r ( 1 ) = 1. As m2𝑚2m\geq 2italic_m ≥ 2, this preserves tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements by Lemma4.4.4. Thus r(t)πnαGR𝑟𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝑅r(t)\in\pi_{n\alpha}^{G}Ritalic_r ( italic_t ) ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R is a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element of order n𝑛nitalic_n. The final statement follows from Lemma4.5.3, which ensures that R𝑅Ritalic_R is (α)𝛼\mathcal{F}(\alpha)caligraphic_F ( italic_α )-nilpotent, and Lemma4.5.2, which ensures that ord(α)(nα)max(2,exp(α)(R))subscriptord𝛼𝑛𝛼2subscript𝛼𝑅\operatorname{ord}_{\mathcal{F}(\alpha)}(n\alpha)\geq\max(2,\exp_{\mathcal{F}(%\alpha)}(R))roman_ord start_POSTSUBSCRIPT caligraphic_F ( italic_α ) end_POSTSUBSCRIPT ( italic_n italic_α ) ≥ roman_max ( 2 , roman_exp start_POSTSUBSCRIPT caligraphic_F ( italic_α ) end_POSTSUBSCRIPT ( italic_R ) ) for some n𝑛nitalic_n dividing a power of |G|𝐺|G|| italic_G |.∎

4.5.5 Corollary.

Let X𝑋Xitalic_X be an \mathcal{F}caligraphic_F-nilpotent G𝐺Gitalic_G-spectrum, and suppose ord(nα)max(2,exp(R))subscriptord𝑛𝛼2subscript𝑅\operatorname{ord}_{\mathcal{F}}(n\alpha)\geq\max(2,\exp_{\mathcal{F}}(R))roman_ord start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_n italic_α ) ≥ roman_max ( 2 , roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_R ) ). Then X𝑋Xitalic_X admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map of order n𝑛nitalic_n. In particular, if X𝑋Xitalic_X is (α)𝛼\mathcal{F}(\alpha)caligraphic_F ( italic_α )-nilpotent then X𝑋Xitalic_X admits a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map of order dividing a power of |G|𝐺|G|| italic_G |; and if X𝑋Xitalic_X is compact, then it suffices to verify just that ΦCX0αC=0superscriptΦ𝐶𝑋0subscript𝛼𝐶0\Phi^{C}X\neq 0\Rightarrow\alpha_{C}=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ italic_α start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G.

Proof.

By [MNN17, Corollary 4.15], we have exp(X)=exp(End(X))subscript𝑋subscriptEnd𝑋\exp_{\mathcal{F}}(X)=\exp_{\mathcal{F}}(\operatorname{End}(X))roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( italic_X ) = roman_exp start_POSTSUBSCRIPT caligraphic_F end_POSTSUBSCRIPT ( roman_End ( italic_X ) ). As X𝑋Xitalic_X is an End(X)End𝑋\operatorname{End}(X)roman_End ( italic_X )-module, a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element in End(X)End𝑋\operatorname{End}(X)roman_End ( italic_X ) induces a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-self map on X𝑋Xitalic_X, so apply Theorem4.5.4 to End(X)End𝑋\operatorname{End}(X)roman_End ( italic_X ).∎

5. General and local equivalences ΣVXΣWXsimilar-to-or-equalssuperscriptΣ𝑉𝑋superscriptΣ𝑊𝑋\Sigma^{V}X\simeq\Sigma^{W}Xroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT italic_X ≃ roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT italic_X

In this section we make some observations about equivalences ΣVXΣWXsimilar-to-or-equalssuperscriptΣ𝑉𝑋superscriptΣ𝑊𝑋\Sigma^{V}X\simeq\Sigma^{W}Xroman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT italic_X ≃ roman_Σ start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT italic_X, possibly after localization, which need not be tVWsubscript𝑡𝑉𝑊t_{V-W}italic_t start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT-self maps.

5.1. Stable equivalences of representation spheres

We begin by summarizing work of tom Dieck, Petrie, and Tornehave on stable equivalences between representation spheres. Given a compact Lie group G𝐺Gitalic_G, the representation rings RU(G)𝑅𝑈𝐺RU(G)italic_R italic_U ( italic_G ) and RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G ) come equipped with Adams operations ψksuperscript𝜓𝑘\psi^{k}italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. These can be computed by their action on characters, given by

χψkV(g)=χV(gk).subscript𝜒superscript𝜓𝑘𝑉𝑔subscript𝜒𝑉superscript𝑔𝑘\chi_{\psi^{k}V}(g)=\chi_{V}(g^{k}).italic_χ start_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g ) = italic_χ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) .

If G𝐺Gitalic_G is finite then these operations satisfy ψk=ψlsuperscript𝜓𝑘superscript𝜓𝑙\psi^{k}=\psi^{l}italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = italic_ψ start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT when kl(mod|G|)𝑘annotated𝑙pmod𝐺k\equiv l\pmod{|G|}italic_k ≡ italic_l start_MODIFIER ( roman_mod start_ARG | italic_G | end_ARG ) end_MODIFIER, and thus the operations ψksuperscript𝜓𝑘\psi^{k}italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT for k𝑘kitalic_k coprime to G𝐺Gitalic_G induce an action of

Γ=(/|G|)×Γsuperscript𝐺\Gamma=(\mathbb{Z}/|G|)^{\times}roman_Γ = ( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT

on RU(G)𝑅𝑈𝐺RU(G)italic_R italic_U ( italic_G ) and RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G ). See [AT69, II §3] for a good discussion of this action (as well as for earlier work on stably equivalent representations). Write I(Γ)𝐼ΓI(\Gamma)italic_I ( roman_Γ ) for the augmentation ideal of [Γ]delimited-[]Γ\mathbb{Z}[\Gamma]blackboard_Z [ roman_Γ ], so that if M𝑀Mitalic_M is a ΓΓ\Gammaroman_Γ-module then M/I(Γ)M𝑀𝐼Γ𝑀M/I(\Gamma)Mitalic_M / italic_I ( roman_Γ ) italic_M is identified with the orbits MΓsubscript𝑀ΓM_{\Gamma}italic_M start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT.

5.1.1 Theorem.

If G𝐺Gitalic_G is finite and k𝑘kitalic_k is coprime to |G|𝐺|G|| italic_G |, then there exists a stable map

f:SVSψkV:𝑓superscript𝑆𝑉superscript𝑆superscript𝜓𝑘𝑉f\colon S^{V}\rightarrow S^{\psi^{k}V}italic_f : italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT

which is an equivalence after inverting k𝑘kitalic_k. Moreover, if V𝑉Vitalic_V is complex then one can choose f𝑓fitalic_f to satisfy

ΦHf=k|VH|/2superscriptΦ𝐻𝑓superscript𝑘superscript𝑉𝐻2\Phi^{H}f=k^{\lfloor|V^{H}|/2\rfloor}roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT italic_f = italic_k start_POSTSUPERSCRIPT ⌊ | italic_V start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | / 2 ⌋ end_POSTSUPERSCRIPT

for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G.

Proof.

The first statement follows from the proof of [tD79, Theorem 10.12]. The refinement is due to Tornehave and appears in [tDP78, Theorem 4]. See also [Tor82, Theorem 4.1] for the more delicate case where V𝑉Vitalic_V is not assumed to be complex.∎

5.1.2 Example.

Let T×𝑇superscriptT\subset\mathbb{C}^{\times}italic_T ⊂ blackboard_C start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT denote the circle group and L=S()𝐿𝑆L=S(\mathbb{C})italic_L = italic_S ( blackboard_C ) be the tautological complex character of T𝑇Titalic_T. Then the k𝑘kitalic_kth power map

ψk:S(Ln)S(Lnk):subscript𝜓𝑘𝑆superscript𝐿𝑛𝑆superscript𝐿𝑛𝑘\psi_{k}\colon S(L^{n})\rightarrow S(L^{nk})italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT : italic_S ( italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) → italic_S ( italic_L start_POSTSUPERSCRIPT italic_n italic_k end_POSTSUPERSCRIPT )

on unit spheres is T𝑇Titalic_T-equivariant. Passing to unreduced suspensions this yields a map

ψk:SLnSLnk:subscript𝜓𝑘superscript𝑆superscript𝐿𝑛superscript𝑆superscript𝐿𝑛𝑘\psi_{k}\colon S^{L^{n}}\rightarrow S^{L^{nk}}italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT : italic_S start_POSTSUPERSCRIPT italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_L start_POSTSUPERSCRIPT italic_n italic_k end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT

with the property that

ΦCdψk={k,dn,0,dnkbutdn,1,dn.superscriptΦsubscript𝐶𝑑subscript𝜓𝑘cases𝑘conditional𝑑𝑛0not-dividesconditional𝑑𝑛𝑘but𝑑𝑛1not-divides𝑑𝑛\Phi^{C_{d}}\psi_{k}=\begin{cases}k,&d\mid n,\\0,&d\mid nk\text{ but }d\nmid n,\\1,&d\nmid n.\end{cases}roman_Φ start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = { start_ROW start_CELL italic_k , end_CELL start_CELL italic_d ∣ italic_n , end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL italic_d ∣ italic_n italic_k but italic_d ∤ italic_n , end_CELL end_ROW start_ROW start_CELL 1 , end_CELL start_CELL italic_d ∤ italic_n . end_CELL end_ROW

In particular, if m𝑚mitalic_m is coprime to k𝑘kitalic_k then ψksubscript𝜓𝑘\psi_{k}italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is an equivalence after restricting to CmTsubscript𝐶𝑚𝑇C_{m}\subset Titalic_C start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⊂ italic_T and inverting k𝑘kitalic_k.\triangleleft

The following theorem now summarizes information about about stably equivalent representation spheres.

Write Pic(A(G))Pic𝐴𝐺\operatorname{Pic}(A(G))roman_Pic ( italic_A ( italic_G ) ) for the Picard group of A(G)=π0SG𝐴𝐺subscript𝜋0subscript𝑆𝐺A(G)=\pi_{0}S_{G}italic_A ( italic_G ) = italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. For a spectrum or abelian group M𝑀Mitalic_M and integer n𝑛nitalic_n, write M(n)=M[p1:gcd(p,n)=1]M_{(n)}=M[p^{-1}:\gcd(p,n)=1]italic_M start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT = italic_M [ italic_p start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : roman_gcd ( italic_p , italic_n ) = 1 ].

5.1.3 Theorem.

Let G𝐺Gitalic_G be a compact Lie group and αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ). The following are equivalent:

  1. (1)

    |αH|=0superscript𝛼𝐻0|\alpha^{H}|=0| italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | = 0 for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G.

  2. (2)

    παSGPic(A(G))subscript𝜋𝛼subscript𝑆𝐺Pic𝐴𝐺\pi_{\alpha}S_{G}\in\operatorname{Pic}(A(G))italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ∈ roman_Pic ( italic_A ( italic_G ) ), with

    πα+XπαSGA(G)πXsubscript𝜋limit-from𝛼𝑋subscripttensor-product𝐴𝐺subscript𝜋𝛼subscript𝑆𝐺subscript𝜋𝑋\pi_{\alpha+\star}X\cong\pi_{\alpha}S_{G}\otimes_{A(G)}\pi_{\star}Xitalic_π start_POSTSUBSCRIPT italic_α + ⋆ end_POSTSUBSCRIPT italic_X ≅ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ start_POSTSUBSCRIPT italic_A ( italic_G ) end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_X

    for any G𝐺Gitalic_G-spectrum X𝑋Xitalic_X.

  3. (3)

    There exists an equivalence SnαS0similar-to-or-equalssuperscript𝑆𝑛𝛼superscript𝑆0S^{n\alpha}\simeq S^{0}italic_S start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT for some n1𝑛1n\geq 1italic_n ≥ 1.

If G𝐺Gitalic_G is finite, then these are moreover equivalent to the following:

  1. (4)

    |αC|=0superscript𝛼𝐶0|\alpha^{C}|=0| italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G.

  2. (5)

    αI(Γ)RO(G)𝛼𝐼Γ𝑅𝑂𝐺\alpha\in I(\Gamma)\cdot RO(G)italic_α ∈ italic_I ( roman_Γ ) ⋅ italic_R italic_O ( italic_G ).

  3. (6)

    There exists an equivalence S(|G|)αS(|G|)similar-to-or-equalssubscriptsuperscript𝑆𝛼𝐺subscript𝑆𝐺S^{\alpha}_{(|G|)}\simeq S_{(|G|)}italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT ≃ italic_S start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT.

In addition,

  1. (7)

    If αI(Γ)2RO(G)𝛼𝐼superscriptΓ2𝑅𝑂𝐺\alpha\in I(\Gamma)^{2}\cdot RO(G)italic_α ∈ italic_I ( roman_Γ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ italic_R italic_O ( italic_G ) then SαS0similar-to-or-equalssuperscript𝑆𝛼superscript𝑆0S^{\alpha}\simeq S^{0}italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, and

  2. (8)

    The converse holds if G𝐺Gitalic_G is a p𝑝pitalic_p-group.

Proof.

(1)\Rightarrow(2): This is [tDP78, Theorem 1].

(2)\Rightarrow(3): The picard group Pic(A(G))Pic𝐴𝐺\operatorname{Pic}(A(G))roman_Pic ( italic_A ( italic_G ) ) has finite exponent [tDP78, Equation 32], and thus

A(G)π0SG(παSG)αnπnαSG𝐴𝐺subscript𝜋0subscript𝑆𝐺superscriptsubscript𝜋𝛼subscript𝑆𝐺subscripttensor-product𝛼absent𝑛subscript𝜋𝑛𝛼subscript𝑆𝐺A(G)\cong\pi_{0}S_{G}\cong(\pi_{\alpha}S_{G})^{\otimes_{\alpha}n}\cong\pi_{n%\alpha}S_{G}italic_A ( italic_G ) ≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ ( italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ⊗ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT ≅ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT

for some n1𝑛1n\geq 1italic_n ≥ 1. The image of 1111 under such an isomorphism is an invertible element in πnαSGsubscript𝜋𝑛𝛼subscript𝑆𝐺\pi_{n\alpha}S_{G}italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, giving an equivalence SnαS0similar-to-or-equalssuperscript𝑆𝑛𝛼superscript𝑆0S^{n\alpha}\simeq S^{0}italic_S start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT.

(3)\Rightarrow(1): If SnαS0similar-to-or-equalssuperscript𝑆𝑛𝛼superscript𝑆0S^{n\alpha}\simeq S^{0}italic_S start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT for some n1𝑛1n\geq 1italic_n ≥ 1, then applying ΦHsuperscriptΦ𝐻\Phi^{H}roman_Φ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT implies Sn|αH|S0similar-to-or-equalssuperscript𝑆𝑛superscript𝛼𝐻superscript𝑆0S^{n|\alpha^{H}|}\simeq S^{0}italic_S start_POSTSUPERSCRIPT italic_n | italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, and thus |αH|=0superscript𝛼𝐻0|\alpha^{H}|=0| italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | = 0 for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G.

(1)\Leftrightarrow(4)\Leftrightarrow(5): This is [tD79, Proposition 9.2.6].

(5)\Rightarrow(6): This follows from Theorem5.1.1.

(6)\Rightarrow(1): Same proof as (3)\Rightarrow(1).

(7,8): These are [tD79, Theorems 9.1.4, 9.1.5].∎

We end this subsection with some comments on how these results can be applied in practice. Say that two virtual representations α𝛼\alphaitalic_α and αsuperscript𝛼\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are locally J𝐽Jitalic_J-equivalent if ααI(Γ)RO(G)𝛼superscript𝛼𝐼Γ𝑅𝑂𝐺\alpha-\alpha^{\prime}\in I(\Gamma)\cdot RO(G)italic_α - italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_I ( roman_Γ ) ⋅ italic_R italic_O ( italic_G ). Theorem5.1.3 says that this is equivalent to the existence of a unit pααπαα(SG)(|G|)subscript𝑝superscript𝛼𝛼subscript𝜋superscript𝛼𝛼subscriptsubscript𝑆𝐺𝐺p_{\alpha^{\prime}-\alpha}\in\pi_{\alpha^{\prime}-\alpha}(S_{G})_{(|G|)}italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT ( italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT. If one finds an algebraic witness to ααI(Γ)RO(G)superscript𝛼𝛼𝐼Γ𝑅𝑂𝐺\alpha^{\prime}-\alpha\in I(\Gamma)\cdot RO(G)italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α ∈ italic_I ( roman_Γ ) ⋅ italic_R italic_O ( italic_G ), for example if α=ψkαsuperscript𝛼superscript𝜓𝑘𝛼\alpha^{\prime}=\psi^{k}\alphaitalic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_α, then Theorem5.1.1 gives some control over the behavior of (a choice for) pααsubscript𝑝superscript𝛼𝛼p_{\alpha^{\prime}-\alpha}italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT. Moreover, in many basic cases 5.1.2 and variations are already sufficient and give completely explicit choices of pααsubscript𝑝superscript𝛼𝛼p_{\alpha^{\prime}-\alpha}italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT.

5.1.4 Example.

If Z𝑍Zitalic_Z is a compact G𝐺Gitalic_G-space and α𝛼\alphaitalic_α vanishes in KOG0(Z)𝐾superscriptsubscript𝑂𝐺0𝑍KO_{G}^{0}(Z)italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ), then α𝛼\alphaitalic_α lifts to bKO~(SZ)G0b\in\widetilde{KO}{}_{G}^{0}(SZ)italic_b ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) and Theorem2.2.1 produces a unit tα=J(b)παD(Σ+Z)subscript𝑡𝛼𝐽𝑏subscript𝜋𝛼𝐷subscriptsuperscriptΣ𝑍t_{\alpha}=J(b)\in\pi_{\alpha}D(\Sigma^{\infty}_{+}Z)italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_J ( italic_b ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) with good properties: for example, reseG(tα)=J(reseG(b))π0eD(Σ+Z)subscriptsuperscriptres𝐺𝑒subscript𝑡𝛼𝐽subscriptsuperscriptres𝐺𝑒𝑏superscriptsubscript𝜋0𝑒𝐷subscriptsuperscriptΣ𝑍\operatorname{res}^{G}_{e}(t_{\alpha})=J(\operatorname{res}^{G}_{e}(b))\in\pi_%{0}^{e}D(\Sigma^{\infty}_{+}Z)roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_J ( roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_b ) ) ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) is in the image of the classical J𝐽Jitalic_J-hom*omorphism. Thus if αsuperscript𝛼\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is locally J𝐽Jitalic_J-equivalent to α𝛼\alphaitalic_α then one obtains a unit

pααtαπαGD(Σ+Z)(|G|)subscript𝑝superscript𝛼𝛼subscript𝑡𝛼superscriptsubscript𝜋superscript𝛼𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝐺p_{\alpha^{\prime}-\alpha}\cdot t_{\alpha}\in\pi_{\alpha^{\prime}}^{G}D(\Sigma%^{\infty}_{+}Z)_{(|G|)}italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT ⋅ italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT

with similarly good properties: for example, reseG(pααJ(b))=kJ(reseG(b))subscriptsuperscriptres𝐺𝑒subscript𝑝superscript𝛼𝛼𝐽𝑏𝑘𝐽subscriptsuperscriptres𝐺𝑒𝑏\operatorname{res}^{G}_{e}(p_{\alpha^{\prime}-\alpha}\cdot J(b))=k\cdot J(%\operatorname{res}^{G}_{e}(b))roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT ⋅ italic_J ( italic_b ) ) = italic_k ⋅ italic_J ( roman_res start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_b ) ) for some integer k𝑘kitalic_k coprime to |G|𝐺|G|| italic_G |.\triangleleft

5.1.5 Example.

In the situation of Theorem1.2.6, if αsuperscript𝛼\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is locally J𝐽Jitalic_J-equivalent to α𝛼\alphaitalic_α then one also has

df(tα)=±J~(b)tαsubscript𝑑𝑓subscript𝑡superscript𝛼plus-or-minus~𝐽𝑏subscript𝑡superscript𝛼d_{f}(t_{\alpha^{\prime}})=\pm\tilde{J}(b)t_{\alpha^{\prime}}italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = ± over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT

in the hom*otopy fixed point spectral sequence. Indeed, pααπααG(SG)(|G|)subscript𝑝superscript𝛼𝛼superscriptsubscript𝜋superscript𝛼𝛼𝐺subscriptsubscript𝑆𝐺𝐺p_{\alpha^{\prime}-\alpha}\in\pi_{\alpha^{\prime}-\alpha}^{G}(S_{G})_{(|G|)}italic_p start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ( italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT is detected by ktαtα1𝑘subscript𝑡superscript𝛼superscriptsubscript𝑡𝛼1k\cdot t_{\alpha^{\prime}}t_{\alpha}^{-1}italic_k ⋅ italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some integer k𝑘kitalic_k coprime to |G|𝐺|G|| italic_G |, which must then be a permanent cycle. As the spectral sequence is |G|𝐺|G|| italic_G |-torsion in positive filtration, it follows that tαtα1subscript𝑡superscript𝛼superscriptsubscript𝑡𝛼1t_{\alpha^{\prime}}t_{\alpha}^{-1}italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is a permanent cycle. Thus

df(tα)=df(tαtα1tα)=tαtα1df(tα)=tαtα1±J~(b)tα=±J~(b)tαd_{f}(t_{\alpha^{\prime}})=d_{f}(t_{\alpha^{\prime}}t_{\alpha}^{-1}t_{\alpha})%=t_{\alpha^{\prime}}t_{\alpha}^{-1}\cdot d_{f}(t_{\alpha})=t_{\alpha^{\prime}}%t_{\alpha}^{-1}\cdot\pm\tilde{J}(b)t_{\alpha}=\pm\tilde{J}(b)t_{\alpha^{\prime}}italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ italic_d start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ ± over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = ± over~ start_ARG italic_J end_ARG ( italic_b ) italic_t start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT

as claimed. Similarly considerations hold for the more general equivariant Atiyah–Hirzebruch spectral sequences handled in Section3.\triangleleft

One might ask to what extent these techniques account for everything, and to that end we leave the following question.

5.1.6 Question.

Let G𝐺Gitalic_G be a finite group and Z𝑍Zitalic_Z be a compact G𝐺Gitalic_G-space. Is every unit in πGD(Σ+Z)(|G|)superscriptsubscript𝜋𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝐺\pi_{\star}^{G}D(\Sigma^{\infty}_{+}Z)_{(|G|)}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT of the form cJ(b)𝑐𝐽𝑏c\cdot J(b)italic_c ⋅ italic_J ( italic_b ), where bKO~(SZ)G0b\in\widetilde{KO}{}_{G}^{0}(SZ)italic_b ∈ over~ start_ARG italic_K italic_O end_ARG start_FLOATSUBSCRIPT italic_G end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S italic_Z ) and c𝑐citalic_c lifts to π(SG)(|G|)×subscript𝜋superscriptsubscriptsubscript𝑆𝐺𝐺\pi_{\star}(S_{G})_{(|G|)}^{\times}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT ( italic_S start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT?\triangleleft

5.2. General periodicities

Throughout this subsection G𝐺Gitalic_G is a finite group. We now explain how Theorem5.1.3 implies a general theorem about the eventual existence of equivalences ΣnαXXsimilar-to-or-equalssuperscriptΣ𝑛𝛼𝑋𝑋\Sigma^{n\alpha}X\simeq Xroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_X ≃ italic_X.

5.2.1 Lemma.

Let Z𝑍Zitalic_Z be a 1111-dimensional G𝐺Gitalic_G-complex. If ZH|αH|=0superscript𝑍𝐻superscript𝛼𝐻0Z^{H}\neq\emptyset\Rightarrow|\alpha^{H}|=0italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅ ⇒ | italic_α start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT | = 0 for all subgroups HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G, then there is an invertible element tπnαGD(Σ+Z)𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝐷subscriptsuperscriptΣ𝑍t\in\pi_{n\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) for some n1𝑛1n\geq 1italic_n ≥ 1.

Proof.

As Z𝑍Zitalic_Z is 1111-dimensional, it can be built as a hom*otopy coequalizer of the form

.

It follows that D(Σ+Z)𝐷subscriptsuperscriptΣ𝑍D(\Sigma^{\infty}_{+}Z)italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) is an equalizer of the form

.

Note that in general παGD(G/H+)παHSHsuperscriptsubscript𝜋𝛼𝐺𝐷𝐺subscript𝐻subscript𝜋subscript𝛼𝐻subscript𝑆𝐻\pi_{\alpha}^{G}D(G/H_{+})\cong\pi_{\alpha_{H}}S_{H}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( italic_G / italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ≅ italic_π start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. Applying Theorem5.1.3(1\Rightarrow3) to the restrictions αHjsubscript𝛼subscript𝐻𝑗\alpha_{H_{j}}italic_α start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT, as G𝐺Gitalic_G is finite we can find some n1𝑛1n\geq 1italic_n ≥ 1 for which there exist equivalences uj:SHjnαSHj0:subscript𝑢𝑗similar-to-or-equalssubscriptsuperscript𝑆𝑛𝛼subscript𝐻𝑗subscriptsuperscript𝑆0subscript𝐻𝑗u_{j}\colon S^{n\alpha}_{H_{j}}\simeq S^{0}_{H_{j}}italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT : italic_S start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT. These determine an invertible element uπnαGjJD(G/Hj+)𝑢superscriptsubscript𝜋𝑛𝛼𝐺subscriptproduct𝑗𝐽𝐷𝐺subscript𝐻limit-from𝑗u\in\pi_{n\alpha}^{G}\prod_{j\in J}D(G/H_{j+})italic_u ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_j ∈ italic_J end_POSTSUBSCRIPT italic_D ( italic_G / italic_H start_POSTSUBSCRIPT italic_j + end_POSTSUBSCRIPT ). Our conventions from 2.1.1 are such that πnαGsuperscriptsubscript𝜋𝑛𝛼𝐺\pi_{n\alpha}^{G}italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT is only defined up to a sign, but this issue goes away after passing to u2πnαGjJD(G/Hj+)superscript𝑢2superscriptsubscript𝜋tensor-product𝑛𝛼𝐺subscriptproduct𝑗𝐽𝐷𝐺subscript𝐻limit-from𝑗u^{2}\in\pi_{\mathbb{C}\otimes n\alpha}^{G}\prod_{j\in J}D(G/H_{j+})italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT blackboard_C ⊗ italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_j ∈ italic_J end_POSTSUBSCRIPT italic_D ( italic_G / italic_H start_POSTSUBSCRIPT italic_j + end_POSTSUBSCRIPT ). Moreover, this square is guaranteed to satisfy f(u2)=g(u2)superscript𝑓superscript𝑢2superscript𝑔superscript𝑢2f^{\ast}(u^{2})=g^{\ast}(u^{2})italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), so u2superscript𝑢2u^{2}italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT lifts to an invertible element tπ2nαGD(Σ+Z)𝑡superscriptsubscript𝜋2𝑛𝛼𝐺𝐷subscriptsuperscriptΣ𝑍t\in\pi_{2n\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_t ∈ italic_π start_POSTSUBSCRIPT 2 italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ).∎

5.2.2 Theorem.

Let G𝐺Gitalic_G be a finite group and R𝑅Ritalic_R be a G𝐺Gitalic_G-ring spectrum, and suppose that ΦCR0|αC|=0superscriptΦ𝐶𝑅0superscript𝛼𝐶0\Phi^{C}R\neq 0\Rightarrow|\alpha^{C}|=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R ≠ 0 ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. Then there exists an invertible element tπnαGR𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝑅t\in\pi_{n\alpha}^{G}Ritalic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R for some n1𝑛1n\geq 1italic_n ≥ 1. The converse holds if each ΦCRsuperscriptΦ𝐶𝑅\Phi^{C}Rroman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R is bounded below.

Proof.

Define the family

[α]={HG:CHcyclic|αC|=0},delimited-[]𝛼conditional-set𝐻𝐺𝐶𝐻cyclicsuperscript𝛼𝐶0\mathcal{F}[\alpha]=\{H\subset G:C\subset H\text{ cyclic}\Rightarrow|\alpha^{C%}|=0\},caligraphic_F [ italic_α ] = { italic_H ⊂ italic_G : italic_C ⊂ italic_H cyclic ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 } ,

and consider the Atiyah–Hirzebruch spectral sequence

E2=HG(E[α];π¯R)RG(E[α]).subscript𝐸2subscriptsuperscript𝐻𝐺𝐸delimited-[]𝛼subscript¯𝜋𝑅subscriptsuperscript𝑅absent𝐺𝐸delimited-[]𝛼E_{2}=H^{\ast}_{G}(E\mathcal{F}[\alpha];\underline{\pi}_{\star}R)\Rightarrow R%^{\ast-\star}_{G}(E\mathcal{F}[\alpha]).italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_E caligraphic_F [ italic_α ] ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R ) ⇒ italic_R start_POSTSUPERSCRIPT ∗ - ⋆ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_E caligraphic_F [ italic_α ] ) .

The argument in Lemma4.5.3 adapts, in conjunction with Theorem5.1.3(1\Leftrightarrow4), to show that R𝑅Ritalic_R is [α]delimited-[]𝛼\mathcal{F}[\alpha]caligraphic_F [ italic_α ]-nilpotent, so this converges to πGRsuperscriptsubscript𝜋𝐺𝑅\pi_{\star}^{G}Ritalic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R with a horizontal vanishing line at a finite page. Lemma5.2.1 ensures that there exists an invertible class uHG0(;π¯kαR)𝑢subscriptsuperscript𝐻0𝐺subscript¯𝜋𝑘𝛼𝑅u\in H^{0}_{G}(\mathcal{F};\underline{\pi}_{k\alpha}R)italic_u ∈ italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( caligraphic_F ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT italic_k italic_α end_POSTSUBSCRIPT italic_R ) for some k1𝑘1k\geq 1italic_k ≥ 1. A theorem of Dress shows that HG>0(E;π¯R)subscriptsuperscript𝐻absent0𝐺𝐸subscript¯𝜋𝑅H^{>0}_{G}(E\mathcal{F};\underline{\pi}_{\star}R)italic_H start_POSTSUPERSCRIPT > 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_E caligraphic_F ; under¯ start_ARG italic_π end_ARG start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R ) is killed by |G|𝐺|G|| italic_G | [GM95, Proposition 21.3]. Thus the Leibniz rule implies that if uisuperscript𝑢𝑖u^{i}italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT survives to the Ersubscript𝐸𝑟E_{r}italic_E start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT-page then ui|G|superscript𝑢𝑖𝐺u^{i|G|}italic_u start_POSTSUPERSCRIPT italic_i | italic_G | end_POSTSUPERSCRIPT survives to the Er+1subscript𝐸𝑟1E_{r+1}italic_E start_POSTSUBSCRIPT italic_r + 1 end_POSTSUBSCRIPT-page. By the horizontal vanishing line it follows that some power u|G|msuperscript𝑢superscript𝐺𝑚u^{|G|^{m}}italic_u start_POSTSUPERSCRIPT | italic_G | start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT is a permanent cycle, and we can take t𝑡titalic_t to be any class detected by this power.

Conversely, if tπnαGR𝑡superscriptsubscript𝜋𝑛𝛼𝐺𝑅t\in\pi_{n\alpha}^{G}Ritalic_t ∈ italic_π start_POSTSUBSCRIPT italic_n italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_R is invertible, then ΦCtπn|αC|ΦCRsuperscriptΦ𝐶𝑡subscript𝜋𝑛superscript𝛼𝐶superscriptΦ𝐶𝑅\Phi^{C}t\in\pi_{n|\alpha^{C}|}\Phi^{C}Rroman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_t ∈ italic_π start_POSTSUBSCRIPT italic_n | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R is invertible. As ΦCRsuperscriptΦ𝐶𝑅\Phi^{C}Rroman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R is bounded below, this is only possible if either ΦCR=0superscriptΦ𝐶𝑅0\Phi^{C}R=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_R = 0 or |αC|=0superscript𝛼𝐶0|\alpha^{C}|=0| italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 as claimed.∎

We deduce Theorem1.2.14 as a corollary.

5.2.3 Theorem.

Let G𝐺Gitalic_G be a finite group and X𝑋Xitalic_X be a compact G𝐺Gitalic_G-spectrum. Then there is an equivalence ΣnαXXsimilar-to-or-equalssuperscriptΣ𝑛𝛼𝑋𝑋\Sigma^{n\alpha}X\simeq Xroman_Σ start_POSTSUPERSCRIPT italic_n italic_α end_POSTSUPERSCRIPT italic_X ≃ italic_X for some n1𝑛1n\geq 1italic_n ≥ 1 if and only if ΦCX0|αC|=0superscriptΦ𝐶𝑋0superscript𝛼𝐶0\Phi^{C}X\neq 0\Rightarrow|\alpha^{C}|=0roman_Φ start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_X ≠ 0 ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G.

Proof.

Apply Theorem5.2.2 to the G𝐺Gitalic_G-ring spectrum End(X)End𝑋\operatorname{End}(X)roman_End ( italic_X ).∎

5.3. The equivariant Adams conjecture

Throughout this subsection G𝐺Gitalic_G is a finite group and Z𝑍Zitalic_Z is a compact G𝐺Gitalic_G-space. We now use work of tom Dieck and Hauschild [tD79, Chapter 11] on the equivariant Adams conjecture to obtain more information about units in πGD(Σ+Z)(|G|)superscriptsubscript𝜋𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝐺\pi_{\star}^{G}D(\Sigma^{\infty}_{+}Z)_{(|G|)}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT. See also work of McClure [McC83]. The starting point is the following. Say that a stable map f:S(ξ)S(ζ):𝑓𝑆𝜉𝑆𝜁f\colon S(\xi)\rightarrow S(\zeta)italic_f : italic_S ( italic_ξ ) → italic_S ( italic_ζ ) of sphere bundles over Z𝑍Zitalic_Z has fiberwise degree dividing a power of k𝑘kitalic_k if for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G and zZH𝑧superscript𝑍𝐻z\in Z^{H}italic_z ∈ italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT, the induced map fzH:S(ξH)zS(ζH)z:subscriptsuperscript𝑓𝐻𝑧𝑆subscriptsuperscript𝜉𝐻𝑧𝑆subscriptsuperscript𝜁𝐻𝑧f^{H}_{z}\colon S(\xi^{H})_{z}\rightarrow S(\zeta^{H})_{z}italic_f start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT : italic_S ( italic_ξ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT → italic_S ( italic_ζ start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT on fibers has degree dividing a power of k𝑘kitalic_k.

5.3.1 Theorem ([tD79, Theorem 11.3.8, Proposition 11.4.4]).

Let ξ𝜉\xiitalic_ξ be a vector bundle over Z𝑍Zitalic_Z and k𝑘kitalic_k be an odd positive integer coprime to |G|𝐺|G|| italic_G |. Then there exist stable maps f:S(ξ)S(ψkξ):𝑓𝑆𝜉𝑆superscript𝜓𝑘𝜉f\colon S(\xi)\rightarrow S(\psi^{k}\xi)italic_f : italic_S ( italic_ξ ) → italic_S ( italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_ξ ) and g:S(ψkξ)S(ξ):𝑔𝑆superscript𝜓𝑘𝜉𝑆𝜉g\colon S(\psi^{k}\xi)\rightarrow S(\xi)italic_g : italic_S ( italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_ξ ) → italic_S ( italic_ξ ) of fiberwise degree dividing a power of k𝑘kitalic_k.∎

The Thom spectrum Th(ξ)Th𝜉\operatorname{Th}(\xi)roman_Th ( italic_ξ ) of a vector bundle ξ𝜉\xiitalic_ξ depends only on its associated sphere bundle S(ξ)𝑆𝜉S(\xi)italic_S ( italic_ξ ), and is functorial in stable maps. The condition that a map f:S(ξ)S(ζ):𝑓𝑆𝜉𝑆𝜁f\colon S(\xi)\rightarrow S(\zeta)italic_f : italic_S ( italic_ξ ) → italic_S ( italic_ζ ) has fiberwise degree dividing a power of k𝑘kitalic_k ensures that it induces an equivalence Th(ξ)[1k]Th(ζ)[1k]Th𝜉delimited-[]1𝑘Th𝜁delimited-[]1𝑘\operatorname{Th}(\xi)[\tfrac{1}{k}]\rightarrow\operatorname{Th}(\zeta)[\tfrac%{1}{k}]roman_Th ( italic_ξ ) [ divide start_ARG 1 end_ARG start_ARG italic_k end_ARG ] → roman_Th ( italic_ζ ) [ divide start_ARG 1 end_ARG start_ARG italic_k end_ARG ]. Hence if we define

JGalg(Z)=KOG0(Z)/(xψkx:xKOG0(Z), 2k,gcd(k,|G|)=1),J_{G}^{\mathrm{alg}}(Z)=KO_{G}^{0}(Z)/(x-\psi^{k}x:x\in KO_{G}^{0}(Z),\,2\nmidk%,\,\gcd(k,|G|)=1),italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT ( italic_Z ) = italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) / ( italic_x - italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_x : italic_x ∈ italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) , 2 ∤ italic_k , roman_gcd ( italic_k , | italic_G | ) = 1 ) ,

and write j:KOG0(Z)JGalg(Z):𝑗𝐾superscriptsubscript𝑂𝐺0𝑍superscriptsubscript𝐽𝐺alg𝑍j\colon KO_{G}^{0}(Z)\rightarrow J_{G}^{\mathrm{alg}}(Z)italic_j : italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) → italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT ( italic_Z ) for the quotient map, then we have the following.

5.3.2 Proposition.

If j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)superscriptsubscript𝐽𝐺alg𝑍J_{G}^{\mathrm{alg}}(Z)italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT ( italic_Z ), then there is an invertible element in παGD(Σ+Z)(|G|)superscriptsubscript𝜋𝛼𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝐺\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)_{(|G|)}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT.

Proof.

This follows from Theorem5.3.1, using the same considerations as in Subsection4.2 to translate between stable maps S(ZV)S(ZW)𝑆subscript𝑍𝑉𝑆subscript𝑍𝑊S(Z_{V})\rightarrow S(Z_{W})italic_S ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) → italic_S ( italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ) and elements in πVWGD(Σ+Z)superscriptsubscript𝜋𝑉𝑊𝐺𝐷subscriptsuperscriptΣ𝑍\pi_{V-W}^{G}D(\Sigma^{\infty}_{+}Z)italic_π start_POSTSUBSCRIPT italic_V - italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ).∎

Our main goal in the rest of this section is to prove a converse to 5.3.2 when G𝐺Gitalic_G is a p𝑝pitalic_p-group.

5.3.3 Lemma.

Write α=VW𝛼𝑉𝑊\alpha=V-Witalic_α = italic_V - italic_W as a difference of representations. If there is an invertible class in παGD(Σ+Z)[1k]superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣ𝑍delimited-[]1𝑘\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)[\tfrac{1}{k}]italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_k end_ARG ], then there is a stable map f:S(ZV)S(ZW):𝑓𝑆subscript𝑍𝑉𝑆subscript𝑍𝑊f\colon S(Z_{V})\rightarrow S(Z_{W})italic_f : italic_S ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) → italic_S ( italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ) of fiberwise degree dividing a power of k𝑘kitalic_k.

Proof.

We may suppose ourselves given a map ϕ:ΣVΣ+ZSW:italic-ϕsuperscriptΣ𝑉subscriptsuperscriptΣ𝑍superscript𝑆𝑊\phi\colon\Sigma^{V}\Sigma^{\infty}_{+}Z\rightarrow S^{W}italic_ϕ : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z → italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT associated to an element uπαGD(Σ+Z)𝑢superscriptsubscript𝜋𝛼𝐺𝐷subscriptsuperscriptΣ𝑍u\in\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)italic_u ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) which becomes invertible after inverting k𝑘kitalic_k. As Z𝑍Zitalic_Z is compact, after possibly enlarging V𝑉Vitalic_V and W𝑊Witalic_W we may write ϕitalic-ϕ\phiitalic_ϕ as the stabilization of a map

f:ΣV(Z+)SW.:𝑓superscriptΣ𝑉subscript𝑍superscript𝑆𝑊f\colon\Sigma^{V}(Z_{+})\rightarrow S^{W}.italic_f : roman_Σ start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ( italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) → italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT .

The assumption that u𝑢uitalic_u is invertible after inverting k𝑘kitalic_k ensures that for all HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G and zZH𝑧superscript𝑍𝐻z\in Z^{H}italic_z ∈ italic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT, the induced map

fzH:SVHSWH,fzH(v)=f(vz):superscriptsubscript𝑓𝑧𝐻formulae-sequencesuperscript𝑆superscript𝑉𝐻superscript𝑆superscript𝑊𝐻superscriptsubscript𝑓𝑧𝐻𝑣𝑓𝑣𝑧f_{z}^{H}\colon S^{V^{H}}\rightarrow S^{W^{H}},\qquad f_{z}^{H}(v)=f(v\wedge z)italic_f start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT : italic_S start_POSTSUPERSCRIPT italic_V start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , italic_f start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ( italic_v ) = italic_f ( italic_v ∧ italic_z )

has degree dividing a power of k𝑘kitalic_k. As SVS(V+1)superscript𝑆𝑉𝑆𝑉1S^{V}\cong S(V+1)italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ≅ italic_S ( italic_V + 1 ), it follows that

f~:SV×ZSW×Z,f~(v,z)=(f(vz),z):~𝑓formulae-sequencesuperscript𝑆𝑉𝑍superscript𝑆𝑊𝑍~𝑓𝑣𝑧𝑓𝑣𝑧𝑧\tilde{f}\colon S^{V}\times Z\rightarrow S^{W}\times Z,\qquad\tilde{f}(v,z)=(f%(v\wedge z),z)over~ start_ARG italic_f end_ARG : italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT × italic_Z → italic_S start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT × italic_Z , over~ start_ARG italic_f end_ARG ( italic_v , italic_z ) = ( italic_f ( italic_v ∧ italic_z ) , italic_z )

defines a map S(ZV+1)S(ZW+1)𝑆subscript𝑍𝑉1𝑆subscript𝑍𝑊1S(Z_{V+1})\rightarrow S(Z_{W+1})italic_S ( italic_Z start_POSTSUBSCRIPT italic_V + 1 end_POSTSUBSCRIPT ) → italic_S ( italic_Z start_POSTSUBSCRIPT italic_W + 1 end_POSTSUBSCRIPT ), hence a stable map S(ZV)S(ZW)𝑆subscript𝑍𝑉𝑆subscript𝑍𝑊S(Z_{V})\rightarrow S(Z_{W})italic_S ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) → italic_S ( italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ), of fiberwise degree dividing a power of k𝑘kitalic_k.∎

5.3.4 Lemma.

If j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)(|G|)subscriptsuperscript𝐽alg𝐺subscript𝑍𝐺J^{\mathrm{alg}}_{G}(Z)_{(|G|)}italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT, then j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)subscriptsuperscript𝐽alg𝐺𝑍J^{\mathrm{alg}}_{G}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ).

Proof.

Deferred to the next subsection, where it appears as 5.4.3.∎

Now fix a prime p𝑝pitalic_p, and suppose that G𝐺Gitalic_G is a p𝑝pitalic_p-group. As discussed in the introduction, the G𝐺Gitalic_G-spectrum KUG/p𝐾subscript𝑈𝐺𝑝KU_{G}/pitalic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p plays a similar role in G𝐺Gitalic_G-equivariant hom*otopy theory as KU/p𝐾𝑈𝑝KU/pitalic_K italic_U / italic_p does in nonequivariant hom*otopy theory. For example, if \ellroman_ℓ generates a dense subgroup of p×/{±1}superscriptsubscript𝑝plus-or-minus1\mathbb{Z}_{p}^{\times}/\{\pm 1\}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT / { ± 1 }—and we may as well assume \ellroman_ℓ is odd here—and we define

JG=Fib(ψψ1:(KOG)p(KOG)p),subscript𝐽𝐺Fib:superscript𝜓superscript𝜓1superscriptsubscript𝐾subscript𝑂𝐺𝑝superscriptsubscript𝐾subscript𝑂𝐺𝑝J_{G}=\operatorname{Fib}\left(\psi^{\ell}-\psi^{1}\colon(KO_{G})_{p}^{\wedge}%\rightarrow(KO_{G})_{p}^{\wedge}\right),italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = roman_Fib ( italic_ψ start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT - italic_ψ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT : ( italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT → ( italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT ) ,

then for any compact G𝐺Gitalic_G-space Z𝑍Zitalic_Z there is an equivalence

LKUG/pD(Σ+Z)F(Σ+Z,JG),similar-to-or-equalssubscript𝐿𝐾subscript𝑈𝐺𝑝𝐷subscriptsuperscriptΣ𝑍𝐹subscriptsuperscriptΣ𝑍subscript𝐽𝐺L_{KU_{G}/p}D(\Sigma^{\infty}_{+}Z)\simeq F(\Sigma^{\infty}_{+}Z,J_{G}),italic_L start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p end_POSTSUBSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) ≃ italic_F ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z , italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ,

where LKUG/psubscript𝐿𝐾subscript𝑈𝐺𝑝L_{KU_{G}/p}italic_L start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p end_POSTSUBSCRIPT denotes Bousfield localization with respect to KUG/p𝐾subscript𝑈𝐺𝑝KU_{G}/pitalic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_p. Write

jK(1)Z:RO(G)KOG0(Z)JG1(Z):superscriptsubscript𝑗𝐾1𝑍𝑅𝑂𝐺𝐾superscriptsubscript𝑂𝐺0𝑍superscriptsubscript𝐽𝐺1𝑍j_{K(1)}^{Z}\colon RO(G)\rightarrow KO_{G}^{0}(Z)\rightarrow J_{G}^{1}(Z)italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT : italic_R italic_O ( italic_G ) → italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) → italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_Z )

for the resulting boundary map. We can now give the following.

5.3.5 Theorem.

Let Z𝑍Zitalic_Z be a compact G𝐺Gitalic_G-space and αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ). Then there exists an invertible element in παGD(Σ+Z)(p)superscriptsubscript𝜋𝛼𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝑝\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)_{(p)}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT if and only if jK(1)Z(α)=0superscriptsubscript𝑗𝐾1𝑍𝛼0j_{K(1)}^{Z}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT ( italic_α ) = 0.

Proof.

If there exists an invertible element in παGD(Σ+Z)(p)superscriptsubscript𝜋𝛼𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝑝\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)_{(p)}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT, then after writing α=VW𝛼𝑉𝑊\alpha=V-Witalic_α = italic_V - italic_W as a difference of representations, Lemma5.3.3 provides a stable map S(ZV)S(ZW)𝑆subscript𝑍𝑉𝑆subscript𝑍𝑊S(Z_{V})\rightarrow S(Z_{W})italic_S ( italic_Z start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ) → italic_S ( italic_Z start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT ) of fiberwise degree coprime to p𝑝pitalic_p. Now [tD79, Theorem 11.4.1, Proposition 11.4.2] implies that jK(1)Z(α)=0superscriptsubscript𝑗𝐾1𝑍𝛼0j_{K(1)}^{Z}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT ( italic_α ) = 0 in JG1(Z)superscriptsubscript𝐽𝐺1𝑍J_{G}^{1}(Z)italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_Z ).

Conversely, if jK(1)Z(α)=0superscriptsubscript𝑗𝐾1𝑍𝛼0j_{K(1)}^{Z}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_K ( 1 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Z end_POSTSUPERSCRIPT ( italic_α ) = 0, then as p𝑝pitalic_p-completion is faithful for finitely generated (p)subscript𝑝\mathbb{Z}_{(p)}blackboard_Z start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT-modules we can decomplete to say that α𝛼\alphaitalic_α is sent to zero in co*ker(ψψ1:KOG0(Z)(p)KOG0(Z)(p))co*ker:superscript𝜓superscript𝜓1𝐾superscriptsubscript𝑂𝐺0subscript𝑍𝑝𝐾superscriptsubscript𝑂𝐺0subscript𝑍𝑝\operatorname{co*ker}(\psi^{\ell}-\psi^{1}\colon KO_{G}^{0}(Z)_{(p)}\rightarrowKO%_{G}^{0}(Z)_{(p)})roman_co*ker ( italic_ψ start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT - italic_ψ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT : italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT → italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT ), and thus also in JGalg(Z)(p)superscriptsubscript𝐽𝐺algsubscript𝑍𝑝J_{G}^{\mathrm{alg}}(Z)_{(p)}italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT. By Lemma5.3.4 we deduce j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)superscriptsubscript𝐽𝐺alg𝑍J_{G}^{\mathrm{alg}}(Z)italic_J start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT ( italic_Z ) and thus there is an invertible element in παGD(Σ+Z)(p)superscriptsubscript𝜋𝛼𝐺𝐷subscriptsubscriptsuperscriptΣ𝑍𝑝\pi_{\alpha}^{G}D(\Sigma^{\infty}_{+}Z)_{(p)}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_Z ) start_POSTSUBSCRIPT ( italic_p ) end_POSTSUBSCRIPT by 5.3.2.∎

5.4. Localization arguments

We now make good on Lemma5.3.4. Given odd positive integers r=(r1,,rt)𝑟subscript𝑟1subscript𝑟𝑡\vec{r}=(r_{1},\ldots,r_{t})over→ start_ARG italic_r end_ARG = ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) coprime to |G|𝐺|G|| italic_G |, set r=r1rt𝑟subscript𝑟1subscript𝑟𝑡r=r_{1}\cdots r_{t}italic_r = italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and define

JG,ralg(Z)=KOG0(Z)[1r]/(xψrix:xKOG0(Z), 1ir).J^{\mathrm{alg}}_{G,\vec{r}}(Z)=KO_{G}^{0}(Z)[\tfrac{1}{r}]/(x-\psi^{r_{i}}x:x%\in KO_{G}^{0}(Z),\,1\leq i\leq r).italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) = italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ] / ( italic_x - italic_ψ start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_x : italic_x ∈ italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) , 1 ≤ italic_i ≤ italic_r ) .

As ψri:KOG0(Z)[1r]KOG0(Z)[1r]:superscript𝜓subscript𝑟𝑖𝐾superscriptsubscript𝑂𝐺0𝑍delimited-[]1𝑟𝐾superscriptsubscript𝑂𝐺0𝑍delimited-[]1𝑟\psi^{r_{i}}\colon KO_{G}^{0}(Z)[\tfrac{1}{r}]\rightarrow KO_{G}^{0}(Z)[\tfrac%{1}{r}]italic_ψ start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT : italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ] → italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ] is a stable operation, it commutes with restrictions and transfers, and so JG,ralg(Z)subscriptsuperscript𝐽alg𝐺𝑟𝑍J^{\mathrm{alg}}_{G,\vec{r}}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) is a quotient Mackey functor of KOG0(Z)[1r]𝐾superscriptsubscript𝑂𝐺0𝑍delimited-[]1𝑟KO_{G}^{0}(Z)[\tfrac{1}{r}]italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ]. It relates to JGalg(Z)subscriptsuperscript𝐽alg𝐺𝑍J^{\mathrm{alg}}_{G}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) via a commutative diagram

.

If kl(mod|G|)𝑘annotated𝑙pmod𝐺k\equiv l\pmod{|G|}italic_k ≡ italic_l start_MODIFIER ( roman_mod start_ARG | italic_G | end_ARG ) end_MODIFIER then ψk=ψlsuperscript𝜓𝑘superscript𝜓𝑙\psi^{k}=\psi^{l}italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = italic_ψ start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT on RO(G)𝑅𝑂𝐺RO(G)italic_R italic_O ( italic_G ), and it follows that the bottom surjection is an isomorphism for Z=𝑍Z=\astitalic_Z = ∗ provided that r𝑟\vec{r}over→ start_ARG italic_r end_ARG generates (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT.

5.4.1 Lemma.

Suppose that r𝑟\vec{r}over→ start_ARG italic_r end_ARG generates (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT and ZC|αC|=0superscript𝑍𝐶superscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow|\alpha^{C}|=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. Then j(α)JG,ralg(Z)𝑗𝛼subscriptsuperscript𝐽alg𝐺𝑟𝑍j(\alpha)\in J^{\mathrm{alg}}_{G,\vec{r}}(Z)italic_j ( italic_α ) ∈ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) is |G|𝐺|G|| italic_G |-power torsion.

Proof.

The claim is that j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JG,ralg(Z)[1|G|]subscriptsuperscript𝐽alg𝐺𝑟𝑍delimited-[]1𝐺J^{\mathrm{alg}}_{G,\vec{r}}(Z)[\tfrac{1}{|G|}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ]. As J,ralg(Z)subscriptsuperscript𝐽alg𝑟𝑍J^{\mathrm{alg}}_{{-},\vec{r}}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) is a Mackey functor, we may use Lemma4.3.1 to reduce to showing that if ZHsuperscript𝑍𝐻Z^{H}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅ then jH,r(α)=0subscript𝑗𝐻𝑟𝛼0j_{H,\vec{r}}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_α ) = 0.

So suppose ZHsuperscript𝑍𝐻Z^{H}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≠ ∅. It follows that ZCsuperscript𝑍𝐶Z^{C}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ for all cyclic subgroups CH𝐶𝐻C\subset Hitalic_C ⊂ italic_H. Thus |αC|=0superscript𝛼𝐶0|\alpha^{C}|=0| italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic subgroups CH𝐶𝐻C\subset Hitalic_C ⊂ italic_H by assumption, and so jH(α)=0subscript𝑗𝐻𝛼0j_{H}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_α ) = 0 in JHalg()subscriptsuperscript𝐽alg𝐻J^{\mathrm{alg}}_{H}(\ast)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( ∗ ) by Theorem5.1.3(1\Leftrightarrow4). As r𝑟\vec{r}over→ start_ARG italic_r end_ARG generates (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT we have JHalg()[1r]JH,ralg()subscriptsuperscript𝐽alg𝐻delimited-[]1𝑟subscriptsuperscript𝐽alg𝐻𝑟J^{\mathrm{alg}}_{H}(\ast)[\tfrac{1}{r}]\cong J^{\mathrm{alg}}_{H,\vec{r}}(\ast)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( ∗ ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ] ≅ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( ∗ ), implying jH,r(α)=0subscript𝑗𝐻𝑟𝛼0j_{H,\vec{r}}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_α ) = 0 in JH,ralg()subscriptsuperscript𝐽alg𝐻𝑟J^{\mathrm{alg}}_{H,\vec{r}}(\ast)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( ∗ ). Pulling back along Z𝑍Z\rightarrow\astitalic_Z → ∗ it follows that jH,r(α)=0subscript𝑗𝐻𝑟𝛼0j_{H,\vec{r}}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_α ) = 0 in JH,ralg(Z)subscriptsuperscript𝐽alg𝐻𝑟𝑍J^{\mathrm{alg}}_{H,\vec{r}}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_H , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ).∎

5.4.2 Proposition.

The class j(α)JGalg(Z)𝑗𝛼subscriptsuperscript𝐽alg𝐺𝑍j(\alpha)\in J^{\mathrm{alg}}_{G}(Z)italic_j ( italic_α ) ∈ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) has finite order if and only if ZC|αC|=0superscript𝑍𝐶superscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow|\alpha^{C}|=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. In this case, its order divides a power of |G|𝐺|G|| italic_G |.

Proof.

First suppose that ZC|αC|=0superscript𝑍𝐶superscript𝛼𝐶0Z^{C}\neq\emptyset\Rightarrow|\alpha^{C}|=0italic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅ ⇒ | italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 for all cyclic subgroups CG𝐶𝐺C\subset Gitalic_C ⊂ italic_G. By Lemma5.4.1 and the comparison map JG,ralg(Z)JGalg(Z)[1r]subscriptsuperscript𝐽alg𝐺𝑟𝑍subscriptsuperscript𝐽alg𝐺𝑍delimited-[]1𝑟J^{\mathrm{alg}}_{G,\vec{r}}(Z)\rightarrow J^{\mathrm{alg}}_{G}(Z)[\tfrac{1}{r}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G , over→ start_ARG italic_r end_ARG end_POSTSUBSCRIPT ( italic_Z ) → italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ], we find that if r𝑟\vec{r}over→ start_ARG italic_r end_ARG generates (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT then j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)[1r|G|]subscriptsuperscript𝐽alg𝐺𝑍delimited-[]1𝑟𝐺J^{\mathrm{alg}}_{G}(Z)[\tfrac{1}{r|G|}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r | italic_G | end_ARG ]. So fix r𝑟\vec{r}over→ start_ARG italic_r end_ARG generating (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT and s𝑠\vec{s}over→ start_ARG italic_s end_ARG generating (/r|G|)×superscript𝑟𝐺(\mathbb{Z}/r|G|)^{\times}( blackboard_Z / italic_r | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT. Then s𝑠\vec{s}over→ start_ARG italic_s end_ARG also generates (/|G|)×superscript𝐺(\mathbb{Z}/|G|)^{\times}( blackboard_Z / | italic_G | ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT, so j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)[1r|G|]subscriptsuperscript𝐽alg𝐺𝑍delimited-[]1𝑟𝐺J^{\mathrm{alg}}_{G}(Z)[\tfrac{1}{r|G|}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_r | italic_G | end_ARG ] and JGalg(Z)[1s|G|]subscriptsuperscript𝐽alg𝐺𝑍delimited-[]1𝑠𝐺J^{\mathrm{alg}}_{G}(Z)[\tfrac{1}{s|G|}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG italic_s | italic_G | end_ARG ], and gcd(r,s)=1𝑟𝑠1\gcd(r,s)=1roman_gcd ( italic_r , italic_s ) = 1 then implies j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)[1|G|]subscriptsuperscript𝐽alg𝐺𝑍delimited-[]1𝐺J^{\mathrm{alg}}_{G}(Z)[\tfrac{1}{|G|}]italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) [ divide start_ARG 1 end_ARG start_ARG | italic_G | end_ARG ]. Thus j(α)𝑗𝛼j(\alpha)italic_j ( italic_α ) has finite order dividing a power of |G|𝐺|G|| italic_G |.

Conversely, if ZCsuperscript𝑍𝐶Z^{C}\neq\emptysetitalic_Z start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT ≠ ∅, then there is some equivariant map p:G/CZ:𝑝𝐺𝐶𝑍p\colon G/C\rightarrow Zitalic_p : italic_G / italic_C → italic_Z. This must satisfy p(j(α))=jC(α)JGalg(G/C)JCalg()superscript𝑝𝑗𝛼subscript𝑗𝐶𝛼subscriptsuperscript𝐽alg𝐺𝐺𝐶subscriptsuperscript𝐽alg𝐶p^{\ast}(j(\alpha))=j_{C}(\alpha)\in J^{\mathrm{alg}}_{G}(G/C)\cong J^{\mathrm%{alg}}_{C}(\ast)italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_j ( italic_α ) ) = italic_j start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( italic_α ) ∈ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_G / italic_C ) ≅ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( ∗ ). It follows that if j(α)𝑗𝛼j(\alpha)italic_j ( italic_α ) is torsion, then so is jC(α)subscript𝑗𝐶𝛼j_{C}(\alpha)italic_j start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( italic_α ), implying that jC(α)=0subscript𝑗𝐶𝛼0j_{C}(\alpha)=0italic_j start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( italic_α ) = 0 as JCalg()subscriptsuperscript𝐽alg𝐶J^{\mathrm{alg}}_{C}(\ast)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( ∗ ) is torsion-free. Thus |αC|=0superscript𝛼𝐶0|\alpha^{C}|=0| italic_α start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT | = 0 by Theorem5.1.3.∎

5.4.3 Corollary.

If j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)(|G|)subscriptsuperscript𝐽alg𝐺subscript𝑍𝐺J^{\mathrm{alg}}_{G}(Z)_{(|G|)}italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT, then j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)subscriptsuperscript𝐽alg𝐺𝑍J^{\mathrm{alg}}_{G}(Z)italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ).

Proof.

If j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0 in JGalg(Z)(|G|)subscriptsuperscript𝐽alg𝐺subscript𝑍𝐺J^{\mathrm{alg}}_{G}(Z)_{(|G|)}italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) start_POSTSUBSCRIPT ( | italic_G | ) end_POSTSUBSCRIPT, then j(α)JGalg(Z)𝑗𝛼subscriptsuperscript𝐽alg𝐺𝑍j(\alpha)\in J^{\mathrm{alg}}_{G}(Z)italic_j ( italic_α ) ∈ italic_J start_POSTSUPERSCRIPT roman_alg end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_Z ) has finite order coprime to |G|𝐺|G|| italic_G |. 5.4.2 then implies that j(α)𝑗𝛼j(\alpha)italic_j ( italic_α ) also has order dividing a power of |G|𝐺|G|| italic_G |, so j(α)=0𝑗𝛼0j(\alpha)=0italic_j ( italic_α ) = 0.∎

At this point, one could also carry out a J𝐽Jitalic_J-theoretic analogue of Subsection4.5, giving information about invertible elements in |G|𝐺|G|| italic_G |-local G𝐺Gitalic_G-ring spectra. We leave the details to the interested reader.

6. Examples

In this section we give examples of the material of the previous sections, focusing especially on the J𝐽Jitalic_J-hom*omorphism

πλKOGπC(aλ)×subscript𝜋𝜆𝐾subscript𝑂𝐺subscript𝜋𝐶superscriptsubscript𝑎𝜆\pi_{\lambda}KO_{G}\rightarrow\pi_{\star}C(a_{\lambda})^{\times}italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT

derived from Theorem2.2.1 and the equivalence D(Σ+S(λ))C(aλ)similar-to-or-equals𝐷subscriptsuperscriptΣ𝑆𝜆𝐶subscript𝑎𝜆D(\Sigma^{\infty}_{+}S(\lambda))\simeq C(a_{\lambda})italic_D ( roman_Σ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_S ( italic_λ ) ) ≃ italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ) guaranteed by the cofiber sequence S(λ)+S0Sλ𝑆subscript𝜆superscript𝑆0superscript𝑆𝜆S(\lambda)_{+}\rightarrow S^{0}\rightarrow S^{\lambda}italic_S ( italic_λ ) start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT. Our goal is to demonstrate that this is in fact quite computable, and that it produces explicit computational information about G𝐺Gitalic_G-equivariant hom*otopy theory and G𝐺Gitalic_G-equivariant stable stems.

The bulk of our work in this section lies in computing the groups πKOGsubscript𝜋𝐾subscript𝑂𝐺\pi_{\star}KO_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, particularly information about aλ:πλKOGRO(G):subscript𝑎𝜆subscript𝜋𝜆𝐾subscript𝑂𝐺𝑅𝑂𝐺a_{\lambda}\colon\pi_{\lambda}KO_{G}\rightarrow RO(G)italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_R italic_O ( italic_G ). We discuss this in general Subsection6.1, and the examples we give have been chosen to illustrate such computations. We focus on the case where G𝐺Gitalic_G is finite.

In our examples we write

jnπnSsubscript𝑗𝑛subscript𝜋𝑛𝑆j_{n}\in\pi_{n}Sitalic_j start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_S

for the J𝐽Jitalic_J-image of a generator of πn+1KOsubscript𝜋𝑛1𝐾𝑂\pi_{n+1}KOitalic_π start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT italic_K italic_O, defined up to a sign, with the understanding that j0=±2subscript𝑗0plus-or-minus2j_{0}=\pm 2italic_j start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ± 2.

6.1. Computing with equivariant K𝐾Kitalic_K-theory

Let G𝐺Gitalic_G be a compact Lie group and λ𝜆\lambdaitalic_λ be a G𝐺Gitalic_G-representation. To apply our machinery to produce periodicities on aλsubscript𝑎𝜆a_{\lambda}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT-torsion, one needs to be able to understand the groups πλKFGsubscript𝜋absent𝜆𝐾subscript𝐹𝐺\pi_{\ast\lambda}KF_{G}italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT:

.

When F=𝐹F=\mathbb{C}italic_F = blackboard_C and λ𝜆\lambdaitalic_λ is a complex representation, equivariant Bott periodicity implies

πλKUGRU(G){βλ},aλβλ=eλ,formulae-sequencesubscript𝜋𝜆𝐾subscript𝑈𝐺𝑅𝑈𝐺subscript𝛽𝜆subscript𝑎𝜆subscript𝛽𝜆subscript𝑒𝜆\pi_{\lambda}KU_{G}\cong RU(G)\{\beta_{\lambda}\},\qquad a_{\lambda}\beta_{%\lambda}=e_{\lambda},italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ italic_R italic_U ( italic_G ) { italic_β start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT } , italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ,

where if V𝑉Vitalic_V is a complex G𝐺Gitalic_G-representation then we write

eV=i(1)iΛiVRU(G)subscript𝑒𝑉subscript𝑖superscript1𝑖superscriptΛ𝑖𝑉𝑅𝑈𝐺e_{V}=\sum_{i}(-1)^{i}\Lambda^{i}V\in RU(G)italic_e start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( - 1 ) start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_Λ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_V ∈ italic_R italic_U ( italic_G )

for the K𝐾Kitalic_K-theory Euler class of V𝑉Vitalic_V, see for example [AT69, Section IV.1]. This Euler class can be computed using character information, for example combining the character identity χψkV(g)=χV(gk)subscript𝜒superscript𝜓𝑘𝑉𝑔subscript𝜒𝑉superscript𝑔𝑘\chi_{\psi^{k}V}(g)=\chi_{V}(g^{k})italic_χ start_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g ) = italic_χ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) with Newton’s identity kΛkV=i=1k(1)i1ψiVΛkiV𝑘superscriptΛ𝑘𝑉superscriptsubscript𝑖1𝑘superscript1𝑖1superscript𝜓𝑖𝑉superscriptΛ𝑘𝑖𝑉k\Lambda^{k}V=\sum_{i=1}^{k}(-1)^{i-1}\psi^{i}V\cdot\Lambda^{k-i}Vitalic_k roman_Λ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( - 1 ) start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_V ⋅ roman_Λ start_POSTSUPERSCRIPT italic_k - italic_i end_POSTSUPERSCRIPT italic_V. It can also be computed using representation information: if pV(g,t)subscript𝑝𝑉𝑔𝑡p_{V}(g,t)italic_p start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g , italic_t ) is the characteristic polynomial of g:VV:𝑔𝑉𝑉g\colon V\rightarrow Vitalic_g : italic_V → italic_V, then χeV(g)=pV(g,1)subscript𝜒subscript𝑒𝑉𝑔subscript𝑝𝑉𝑔1\chi_{e_{V}}(g)=p_{V}(g,1)italic_χ start_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_g ) = italic_p start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g , 1 ).

In general we do not have a complete recipe for πλKUGsubscript𝜋absent𝜆𝐾subscript𝑈𝐺\pi_{\ast\lambda}KU_{G}italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT when λ𝜆\lambdaitalic_λ does not admit a complex structure. As one always has Bott periodicity in the form π(+2)λKUGπλKUG{βλ}subscript𝜋absent2𝜆𝐾subscript𝑈𝐺subscript𝜋absent𝜆𝐾subscript𝑈𝐺subscript𝛽tensor-product𝜆\pi_{(\ast+2)\lambda}KU_{G}\cong\pi_{\ast\lambda}KU_{G}\{\beta_{\mathbb{C}%\otimes\lambda}\}italic_π start_POSTSUBSCRIPT ( ∗ + 2 ) italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT { italic_β start_POSTSUBSCRIPT blackboard_C ⊗ italic_λ end_POSTSUBSCRIPT }, we are left with the following problem.

6.1.1 Problem.

For a real G𝐺Gitalic_G-representation λ𝜆\lambdaitalic_λ, describe the sequence

,

the composite of which is multiplication by eλsubscript𝑒tensor-product𝜆e_{\mathbb{C}\otimes\lambda}italic_e start_POSTSUBSCRIPT blackboard_C ⊗ italic_λ end_POSTSUBSCRIPT.\triangleleft

6.1.2 Remark.

If G𝐺Gitalic_G is finite, then for any αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), there is a natural character isomorphism

παKUGgH~0(Sαg/C(g),[β±1]).tensor-productsubscript𝜋𝛼𝐾subscript𝑈𝐺subscriptproductdelimited-⟨⟩𝑔superscript~𝐻0superscript𝑆superscript𝛼𝑔𝐶𝑔delimited-[]superscript𝛽plus-or-minus1\mathbb{C}\otimes\pi_{\alpha}KU_{G}\cong\prod_{\langle g\rangle}\widetilde{H}^%{0}(S^{\alpha^{g}}/C(g),\mathbb{C}[\beta^{\pm 1}]).blackboard_C ⊗ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ ∏ start_POSTSUBSCRIPT ⟨ italic_g ⟩ end_POSTSUBSCRIPT over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT / italic_C ( italic_g ) , blackboard_C [ italic_β start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] ) .

Here, the product is over the conjugacy classes of elements gG𝑔𝐺g\in Gitalic_g ∈ italic_G, and C(g)𝐶𝑔C(g)italic_C ( italic_g ) is the centralizer of g𝑔gitalic_g acting on the fixed points Sαgsuperscript𝑆superscript𝛼𝑔S^{\alpha^{g}}italic_S start_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT. In particular, the sequence of 6.1.1 is easily understood after complexification.\triangleleft

6.1.3 Remark.

Karoubi [Kar02] has shown that παKUGsubscript𝜋𝛼𝐾subscript𝑈𝐺\pi_{\alpha}KU_{G}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is a free abelian group for any αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ). The ranks of these free abelian groups are determined by 6.1.2, as described in [Kar02, Theorem 1.8], so this completely describes πKUGsubscript𝜋𝐾subscript𝑈𝐺\pi_{\star}KU_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT additively.\triangleleft

Once enough is known about πKUGsubscript𝜋𝐾subscript𝑈𝐺\pi_{\star}KU_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, one can descend to πKOGsubscript𝜋𝐾subscript𝑂𝐺\pi_{\star}KO_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT using the hom*otopy fixed point spectral sequence (HFPSS)

E2=H(C2;πKUG)πKOG,subscript𝐸2superscript𝐻subscript𝐶2subscript𝜋𝐾subscript𝑈𝐺subscript𝜋absent𝐾subscript𝑂𝐺E_{2}=H^{\ast}(C_{2};\pi_{\star}KU_{G})\Rightarrow\pi_{\star-\ast}KO_{G},italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ⇒ italic_π start_POSTSUBSCRIPT ⋆ - ∗ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ,

where C2={ψ±1}subscript𝐶2superscript𝜓plus-or-minus1C_{2}=\{\psi^{\pm 1}\}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = { italic_ψ start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT } acts on KUG𝐾subscript𝑈𝐺KU_{G}italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT by complex conjugation. This also describes πKSpGsubscript𝜋𝐾𝑆subscript𝑝𝐺\pi_{\star}KSp_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_S italic_p start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT as KSpGΣ4KOGsimilar-to-or-equals𝐾𝑆subscript𝑝𝐺superscriptΣ4𝐾subscript𝑂𝐺KSp_{G}\simeq\Sigma^{4}KO_{G}italic_K italic_S italic_p start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≃ roman_Σ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. We make some obervations about this spectral sequence.

6.1.4 Remark.

The structure of KOG𝐾superscript𝑂𝐺KO^{G}italic_K italic_O start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT was determined by Segal [Seg68], and this in turn determines the HFPSS for πKOGsubscript𝜋𝐾subscript𝑂𝐺\pi_{\ast}KO_{G}italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT in integer degrees. See [MNN17, Section 9] for a detailed discussion. In particular, KUG𝐾superscript𝑈𝐺KU^{G}italic_K italic_U start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT is a free KU𝐾𝑈KUitalic_K italic_U-module with basis indexed by the irreducible complex G𝐺Gitalic_G-representations, and likewise KOG𝐾superscript𝑂𝐺KO^{G}italic_K italic_O start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT splits into a sum of KO𝐾𝑂KOitalic_K italic_O-modules indexed by the irreducible real G𝐺Gitalic_G-representations, where these summands are of the form KO𝐾𝑂KOitalic_K italic_O, KU𝐾𝑈KUitalic_K italic_U, or KSp𝐾𝑆𝑝KSpitalic_K italic_S italic_p, corresponding to the orthogonal, complex, and symplectic irreducibles.\triangleleft

6.1.5 Remark.

The symplectic orientation of KO𝐾𝑂KOitalic_K italic_O implies that if V𝑉Vitalic_V is a quaternionic G𝐺Gitalic_G-representation, then the associated KU𝐾𝑈KUitalic_K italic_U-Thom class in πV|V|KUGsubscript𝜋𝑉𝑉𝐾subscript𝑈𝐺\pi_{V-|V|}KU_{G}italic_π start_POSTSUBSCRIPT italic_V - | italic_V | end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT descends to KOG𝐾subscript𝑂𝐺KO_{G}italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. See [Fre03, Section 5] for further discussion. In this case, F(SV,KOG)Σ|V|KOGsimilar-to-or-equals𝐹superscript𝑆𝑉𝐾subscript𝑂𝐺superscriptΣ𝑉𝐾subscript𝑂𝐺F(S^{V},KO_{G})\simeq\Sigma^{|V|}KO_{G}italic_F ( italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT , italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ≃ roman_Σ start_POSTSUPERSCRIPT | italic_V | end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT has fixed points determined by the representation theory of G𝐺Gitalic_G as in 6.1.4. If for example V𝑉Vitalic_V is a complex G𝐺Gitalic_G-representation (such as Usubscripttensor-product𝑈\mathbb{C}\otimes_{\mathbb{R}}Ublackboard_C ⊗ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT italic_U for a real representation U𝑈Uitalic_U), then V+ψ1V=V𝑉superscript𝜓1𝑉subscripttensor-product𝑉V+\psi^{-1}V=\mathbb{H}\otimes_{\mathbb{C}}Vitalic_V + italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_V = blackboard_H ⊗ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_V is a quaternionic representation, so this reduces the computation of πKOGsubscript𝜋𝐾subscript𝑂𝐺\pi_{\star}KO_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT to essentially finitely many degrees.\triangleleft

Now suppose that G𝐺Gitalic_G is finite. We can further cut down the amount of work needed to understand πKFGsubscript𝜋𝐾subscript𝐹𝐺\pi_{\star}KF_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT as follows. For F=𝐹F=\mathbb{R}italic_F = blackboard_R or \mathbb{C}blackboard_C, write

ϵ:KFGKF,ϵ:RF(G),ϵ(V)=dimF(V/G):italic-ϵ𝐾superscript𝐹𝐺𝐾𝐹italic-ϵ:formulae-sequence𝑅𝐹𝐺italic-ϵ𝑉subscriptdimension𝐹𝑉𝐺\epsilon\colon KF^{G}\rightarrow KF,\qquad\epsilon\colon RF(G)\rightarrow%\mathbb{Z},\qquad\epsilon(V)=\dim_{F}(V/G)italic_ϵ : italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT → italic_K italic_F , italic_ϵ : italic_R italic_F ( italic_G ) → blackboard_Z , italic_ϵ ( italic_V ) = roman_dim start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( italic_V / italic_G )

for the projection onto the summand corresponding to the trivial representation.

6.1.6 Lemma.

For F=𝐹F=\mathbb{R}italic_F = blackboard_R or \mathbb{C}blackboard_C, the composite

,=::\langle{-},{=}\rangle\colon\leavevmode\hbox to172.47pt{\vbox to18.08pt{%\pgfpicture\makeatletter\hbox{\hskip 86.2333pt\lower-9.08954pt\hbox to0.0pt{%\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}%\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}%{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hboxto%0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{%{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-86.2333pt}{-8.9897pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{%\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#%\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{%\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 3%4.39299pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-30.08745pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{%rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${KF^{G}\otimes_{KF}KF^{%G}}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 34.39299pt\hfil&%\hfil\hskip 39.02089pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{%\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-10.71538pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{%rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${KF^{G}}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 15.02092pt\hfil&%\hfil\hskip 36.8194pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox%{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-8.51389pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb%}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${KF}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.81943pt\hfil\cr%}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{}{{}{}{}}{}{{}{}{}}{{{{{}}{{}{}}{}{}{{}{}}}}}{}{{{{{}}{{}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope%\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{%}{}{{}}\pgfsys@moveto{-17.24733pt}{-6.4897pt}\pgfsys@lineto{5.95268pt}{-6.4897%pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{%{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}%{6.15266pt}{-6.4897pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope %}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{-7.55626pt}{-2.77585pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor%}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mu}$}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}{}{}}{}{{}{}{}}{{{{{}}{{}{}}{}{}{{}{}}}}}{}{{{{{}}{{}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope%\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{%}{}{{}}\pgfsys@moveto{36.79448pt}{-6.4897pt}\pgfsys@lineto{59.99449pt}{-6.4897%pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{%{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}%{60.19447pt}{-6.4897pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope % }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{%\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}}{{}{{}}}{{}{}}{}{{}{}}{}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1%.0}{47.17381pt}{-4.13693pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor%}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }%\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\epsilon}$%}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }%\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}⟨ - , = ⟩ : italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ⊗ start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT italic_K italic_F italic_μ italic_ϵ

is adjoint to an equivalence KFGodKF(KFG,KF)similar-to-or-equals𝐾superscript𝐹𝐺subscriptod𝐾𝐹𝐾superscript𝐹𝐺𝐾𝐹KF^{G}\simeq\mathcal{M}\mathrm{od}_{KF}(KF^{G},KF)italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ≃ caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT ( italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT , italic_K italic_F ).

Proof.

As base change odKOodKUsubscriptod𝐾𝑂subscriptod𝐾𝑈\mathcal{M}\mathrm{od}_{KO}\rightarrow\mathcal{M}\mathrm{od}_{KU}caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_O end_POSTSUBSCRIPT → caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_U end_POSTSUBSCRIPT is conservative, satisfies KUKO(KOG)KUGsimilar-to-or-equalssubscripttensor-product𝐾𝑂𝐾𝑈𝐾superscript𝑂𝐺𝐾superscript𝑈𝐺KU\otimes_{KO}(KO^{G})\simeq KU^{G}italic_K italic_U ⊗ start_POSTSUBSCRIPT italic_K italic_O end_POSTSUBSCRIPT ( italic_K italic_O start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ) ≃ italic_K italic_U start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT, and is compatible with ϵitalic-ϵ\epsilonitalic_ϵ, it suffices to consider the case F=𝐹F=\mathbb{C}italic_F = blackboard_C. As KUG𝐾superscript𝑈𝐺KU^{G}italic_K italic_U start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT is free over KU𝐾𝑈KUitalic_K italic_U, it suffices to show that ,=\langle{-},{=}\rangle⟨ - , = ⟩ induces a perfect pairing RU(G)RU(G)subscripttensor-product𝑅𝑈𝐺𝑅𝑈𝐺RU(G)\otimes_{\mathbb{Z}}RU(G)\rightarrow\mathbb{Z}italic_R italic_U ( italic_G ) ⊗ start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT italic_R italic_U ( italic_G ) → blackboard_Z on π0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This pairing acts on irreducible G𝐺Gitalic_G-representations V𝑉Vitalic_V and W𝑊Witalic_W by

V,W=dim((VW)/G)=dim(Hom(V,W)G)={1,Wψ1V,0,otherwise.\langle V,W\rangle=\dim_{\mathbb{C}}((V\otimes W)/G)=\dim_{\mathbb{C}}(%\operatorname{Hom}(V^{\vee},W)^{G})=\begin{cases}1,&W\cong\psi^{-1}V,\\0,&\text{ otherwise}.\end{cases}⟨ italic_V , italic_W ⟩ = roman_dim start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( ( italic_V ⊗ italic_W ) / italic_G ) = roman_dim start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( roman_Hom ( italic_V start_POSTSUPERSCRIPT ∨ end_POSTSUPERSCRIPT , italic_W ) start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT ) = { start_ROW start_CELL 1 , end_CELL start_CELL italic_W ≅ italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_V , end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL otherwise . end_CELL end_ROW

This is evidently a perfect pairing, though note that it is not quite the usual inner product on RU(G)𝑅𝑈𝐺RU(G)italic_R italic_U ( italic_G ).∎

This is an integral version of the height 1111 case of the K(n)𝐾𝑛K(n)italic_K ( italic_n )-local duality considered by Strickland in [Str00]. It has the following consequence.

6.1.7 Proposition.

Let F=𝐹F=\mathbb{R}italic_F = blackboard_R or \mathbb{C}blackboard_C and let M𝑀Mitalic_M be a KFG𝐾subscript𝐹𝐺KF_{G}italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT-module. Then there is an equivalence

odKFG(M,KFG)odKF(MG,KF),similar-tosubscriptod𝐾subscript𝐹𝐺𝑀𝐾subscript𝐹𝐺subscriptod𝐾𝐹superscript𝑀𝐺𝐾𝐹\displaystyle\mathcal{M}\mathrm{od}_{KF_{G}}(M,KF_{G})\xrightarrow{\raisebox{-%1.0pt}{\tiny{$\sim$}}}\mathcal{M}\mathrm{od}_{KF}(M^{G},KF),caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_M , italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) start_ARROW over∼ → end_ARROW caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT ( italic_M start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT , italic_K italic_F ) ,
(f:MKFG)(ϵfG:MGKFGKF)\displaystyle(f\colon M\rightarrow KF_{G})\mapsto(\epsilon\circ f^{G}\colon M^%{G}\rightarrow KF^{G}\rightarrow KF)( italic_f : italic_M → italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) ↦ ( italic_ϵ ∘ italic_f start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT : italic_M start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT → italic_K italic_F start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT → italic_K italic_F )

of KF𝐾𝐹KFitalic_K italic_F-modules.

Proof.

This is a natural transformation

odKFG(,KFG)odKF(()G,KF)subscriptod𝐾subscript𝐹𝐺𝐾subscript𝐹𝐺subscriptod𝐾𝐹superscript𝐺𝐾𝐹\mathcal{M}\mathrm{od}_{KF_{G}}({-},KF_{G})\rightarrow\mathcal{M}\mathrm{od}_{%KF}(({-})^{G},KF)caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( - , italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) → caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT ( ( - ) start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT , italic_K italic_F )

between limit-preserving functors odKFGopodKFsuperscriptsubscriptod𝐾subscript𝐹𝐺opsubscriptod𝐾𝐹\mathcal{M}\mathrm{od}_{KF_{G}}^{\mathrm{op}}\rightarrow\mathcal{M}\mathrm{od}%_{KF}caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_op end_POSTSUPERSCRIPT → caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT. It therefore suffices to check that it is an equivalence when evaluated on G/H+KFGtensor-product𝐺subscript𝐻𝐾subscript𝐹𝐺G/H_{+}\otimes KF_{G}italic_G / italic_H start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ⊗ italic_K italic_F start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT for HG𝐻𝐺H\subset Gitalic_H ⊂ italic_G. But in this case the map is exactly the equivalence

KFHodKF(KFH,KF)similar-to-or-equals𝐾superscript𝐹𝐻subscriptod𝐾𝐹𝐾superscript𝐹𝐻𝐾𝐹KF^{H}\simeq\mathcal{M}\mathrm{od}_{KF}(KF^{H},KF)italic_K italic_F start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT ≃ caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_F end_POSTSUBSCRIPT ( italic_K italic_F start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT , italic_K italic_F )

guaranteed by Lemma6.1.6.∎

6.1.8 Corollary.

For any αRO(G)𝛼𝑅𝑂𝐺\alpha\in RO(G)italic_α ∈ italic_R italic_O ( italic_G ), the map

,=:παKUGπαKUG,x,y=ϵ(xy):formulae-sequencesubscripttensor-productsubscript𝜋𝛼𝐾subscript𝑈𝐺subscript𝜋𝛼𝐾subscript𝑈𝐺𝑥𝑦italic-ϵ𝑥𝑦\langle{-},{=}\rangle\colon\pi_{\alpha}KU_{G}\otimes_{\mathbb{Z}}\pi_{-\alpha}%KU_{G}\rightarrow\mathbb{Z},\qquad\langle x,y\rangle=\epsilon(xy)⟨ - , = ⟩ : italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT - italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → blackboard_Z , ⟨ italic_x , italic_y ⟩ = italic_ϵ ( italic_x italic_y )

is adjoint to an isomorphism παKUGHom(παKUG,)subscript𝜋𝛼𝐾subscript𝑈𝐺subscriptHomsubscript𝜋𝛼𝐾subscript𝑈𝐺\pi_{\alpha}KU_{G}\cong\operatorname{Hom}_{\mathbb{Z}}(\pi_{-\alpha}KU_{G},%\mathbb{Z})italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≅ roman_Hom start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT - italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , blackboard_Z ). Moreover, if α=λ𝛼𝜆\alpha=\lambdaitalic_α = italic_λ is a G𝐺Gitalic_G-representation then aλ:π0KUGπλKUG:subscript𝑎𝜆subscript𝜋0𝐾subscript𝑈𝐺subscript𝜋𝜆𝐾subscript𝑈𝐺a_{\lambda}\colon\pi_{0}KU_{G}\rightarrow\pi_{-\lambda}KU_{G}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT - italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is dual to aλ:πλKUGπ0KUG:subscript𝑎𝜆subscript𝜋𝜆𝐾subscript𝑈𝐺subscript𝜋0𝐾subscript𝑈𝐺a_{\lambda}\colon\pi_{\lambda}KU_{G}\rightarrow\pi_{0}KU_{G}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT.

Proof.

The adjoint παKUGHom(παKUG,)subscript𝜋𝛼𝐾subscript𝑈𝐺subscriptHomsubscript𝜋𝛼𝐾subscript𝑈𝐺\pi_{\alpha}KU_{G}\rightarrow\operatorname{Hom}_{\mathbb{Z}}(\pi_{-\alpha}KU_{%G},\mathbb{Z})italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT → roman_Hom start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT - italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , blackboard_Z ) may be written as

παKUGsubscript𝜋𝛼𝐾subscript𝑈𝐺\displaystyle\pi_{\alpha}KU_{G}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPTπ0(odKUG(KUGSα,KUG))absentsubscript𝜋0subscriptod𝐾subscript𝑈𝐺tensor-product𝐾subscript𝑈𝐺superscript𝑆𝛼𝐾subscript𝑈𝐺\displaystyle\cong\pi_{0}(\mathcal{M}\mathrm{od}_{KU_{G}}(KU_{G}\otimes S^{%\alpha},KU_{G}))≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT , italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) )
π0odKU((KUGSα)G,KU)Hom(παKUG,).similar-toabsentsubscript𝜋0subscriptod𝐾𝑈superscripttensor-product𝐾subscript𝑈𝐺superscript𝑆𝛼𝐺𝐾𝑈similar-tosubscriptHomsubscript𝜋𝛼𝐾subscript𝑈𝐺\displaystyle\xrightarrow{\raisebox{-1.0pt}{\tiny{$\sim$}}}\pi_{0}\mathcal{M}%\mathrm{od}_{KU}((KU_{G}\otimes S^{\alpha})^{G},KU)\xrightarrow{\raisebox{-1.0%pt}{\tiny{$\sim$}}}\operatorname{Hom}_{\mathbb{Z}}(\pi_{-\alpha}KU_{G},\mathbb%{Z}).start_ARROW over∼ → end_ARROW italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_U end_POSTSUBSCRIPT ( ( italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT , italic_K italic_U ) start_ARROW over∼ → end_ARROW roman_Hom start_POSTSUBSCRIPT blackboard_Z end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT - italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT , blackboard_Z ) .

Here, the first equivalence holds by definition, the second is obtained from 6.1.7, and the third holds as (KUGSα)Gsuperscripttensor-product𝐾subscript𝑈𝐺superscript𝑆𝛼𝐺(KU_{G}\otimes S^{\alpha})^{G}( italic_K italic_U start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ⊗ italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT is a free KU𝐾𝑈KUitalic_K italic_U-module by Karoubi [Kar02]. The final statement holds just as aλ:S0Sλ:subscript𝑎𝜆superscript𝑆0superscript𝑆𝜆a_{\lambda}\colon S^{0}\rightarrow S^{\lambda}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT : italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT is dual to aλ:SλS0:subscript𝑎𝜆superscript𝑆𝜆superscript𝑆0a_{\lambda}\colon S^{-\lambda}\rightarrow S^{0}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT : italic_S start_POSTSUPERSCRIPT - italic_λ end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT.∎

6.1.9 Remark.

By the Leibniz rule we have

0=dr(x,y)=dr(x),y+x,dr(y).0subscript𝑑𝑟𝑥𝑦subscript𝑑𝑟𝑥𝑦𝑥subscript𝑑𝑟𝑦0=d_{r}(\langle x,y\rangle)=\langle d_{r}(x),y\rangle+\langle x,d_{r}(y)\rangle.0 = italic_d start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( ⟨ italic_x , italic_y ⟩ ) = ⟨ italic_d start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_x ) , italic_y ⟩ + ⟨ italic_x , italic_d start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_y ) ⟩ .

In particular, the HFPSS for π+αKOGsubscript𝜋absent𝛼𝐾subscript𝑂𝐺\pi_{\ast+\alpha}KO_{G}italic_π start_POSTSUBSCRIPT ∗ + italic_α end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT is determined by the HFPSS for παKOGsubscript𝜋absent𝛼𝐾subscript𝑂𝐺\pi_{\ast-\alpha}KO_{G}italic_π start_POSTSUBSCRIPT ∗ - italic_α end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT, cutting the work needed to compute πKOGsubscript𝜋𝐾subscript𝑂𝐺\pi_{\star}KO_{G}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT in half.\triangleleft

6.2. Example: cyclic groups

Character theory ensures that much of the structure of G𝐺Gitalic_G-equivariant K𝐾Kitalic_K-theory is controlled by the case where G𝐺Gitalic_G is a cyclic group. So before giving more exotic examples, we begin by summarizing the structure of cyclic-equivariant K𝐾Kitalic_K-theory.

6.2.1. Complex circle-equivariant K𝐾Kitalic_K-theory

Let T×𝑇superscriptT\subset\mathbb{C}^{\times}italic_T ⊂ blackboard_C start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT be the circle group. We begin by describing KUT𝐾subscript𝑈𝑇KU_{T}italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. Let L𝐿Litalic_L be the tautological complex character of T𝑇Titalic_T, so that

π0KUTRU(T)[L±1].subscript𝜋0𝐾subscript𝑈𝑇𝑅𝑈𝑇delimited-[]superscript𝐿plus-or-minus1\pi_{0}KU_{T}\cong RU(T)\cong\mathbb{Z}[L^{\pm 1}].italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ≅ italic_R italic_U ( italic_T ) ≅ blackboard_Z [ italic_L start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] .

If αRO(T)𝛼𝑅𝑂𝑇\alpha\in RO(T)italic_α ∈ italic_R italic_O ( italic_T ), then either α𝛼\alphaitalic_α or α+1𝛼1\alpha+1italic_α + 1 lifts to RU(T)𝑅𝑈𝑇RU(T)italic_R italic_U ( italic_T ), but this lift is not canonical. There are several constructions that depend on the choice of a complex structure, and for this reason it can be convenient to think of T𝑇Titalic_T-equivariant hom*otopy groups as graded not over RO(T)𝑅𝑂𝑇RO(T)italic_R italic_O ( italic_T ), but over “RU(T)𝑅𝑈𝑇RU(T)italic_R italic_U ( italic_T ) adjoined =1212\mathbb{R}=\tfrac{1}{2}\mathbb{C}blackboard_R = divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_C”, i.e.the group

({Ln:n}{1})/(L02).direct-sumconditional-setsuperscript𝐿𝑛𝑛1superscript𝐿02\left(\mathbb{Z}\{L^{n}:n\in\mathbb{Z}\}\oplus\mathbb{Z}\{1\}\right)/(L^{0}-2).( blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT : italic_n ∈ blackboard_Z } ⊕ blackboard_Z { 1 } ) / ( italic_L start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT - 2 ) .

Associated to every virtual complex representation α=iniLi𝛼subscript𝑖subscript𝑛𝑖superscript𝐿𝑖\alpha=\sum_{i}n_{i}L^{i}italic_α = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT is the invertible Bott class

βα=iβLiniπαKUTRU(T){βα}.subscript𝛽𝛼subscriptproduct𝑖superscriptsubscript𝛽superscript𝐿𝑖subscript𝑛𝑖subscript𝜋𝛼𝐾subscript𝑈𝑇𝑅𝑈𝑇subscript𝛽𝛼\beta_{\alpha}=\prod_{i}\beta_{L^{i}}^{n_{i}}\in\pi_{\alpha}KU_{T}\cong RU(T)%\{\beta_{\alpha}\}.italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ≅ italic_R italic_U ( italic_T ) { italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT } .

Together with π1KUT=0subscript𝜋1𝐾subscript𝑈𝑇0\pi_{1}KU_{T}=0italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = 0, this completely determines πKUTsubscript𝜋𝐾subscript𝑈𝑇\pi_{\star}KU_{T}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT.

The Adams operation ψ1superscript𝜓1\psi^{-1}italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT acts on πKUTsubscript𝜋𝐾subscript𝑈𝑇\pi_{\star}KU_{T}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT by multiplicative automorphisms, satisfying

ψ1(L)=L1,ψ1(βLi)=LiβLi.formulae-sequencesuperscript𝜓1𝐿superscript𝐿1superscript𝜓1subscript𝛽superscript𝐿𝑖superscript𝐿𝑖subscript𝛽superscript𝐿𝑖\psi^{-1}(L)=L^{-1},\qquad\psi^{-1}(\beta_{L^{i}})=-L^{-i}\cdot\beta_{L^{i}}.italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_L ) = italic_L start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = - italic_L start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .

The Adams operation ψksuperscript𝜓𝑘\psi^{k}italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT for k>0𝑘0k>0italic_k > 0 acts on πVKUTKU~(SV)0T\pi_{V}KU_{T}\cong\widetilde{KU}{}_{0}^{T}(S^{V})italic_π start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ≅ over~ start_ARG italic_K italic_U end_ARG start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_V end_POSTSUPERSCRIPT ) for V𝑉Vitalic_V an actual representation by ring endomorphisms, where it is determined by

ψk(L)=Lk,ψk(βLi)=(1+Li+L2i++L(k1)i)βLi.formulae-sequencesuperscript𝜓𝑘𝐿superscript𝐿𝑘superscript𝜓𝑘subscript𝛽superscript𝐿𝑖1superscript𝐿𝑖superscript𝐿2𝑖superscript𝐿𝑘1𝑖subscript𝛽superscript𝐿𝑖\psi^{k}(L)=L^{k},\qquad\psi^{k}(\beta_{L^{i}})=(1+L^{i}+L^{2i}+\cdots+L^{(k-1%)i})\cdot\beta_{L^{i}}.italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_L ) = italic_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_ψ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = ( 1 + italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 2 italic_i end_POSTSUPERSCRIPT + ⋯ + italic_L start_POSTSUPERSCRIPT ( italic_k - 1 ) italic_i end_POSTSUPERSCRIPT ) ⋅ italic_β start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .

See for example [AT69]. Finally, if V=iniLi𝑉subscript𝑖subscript𝑛𝑖superscript𝐿𝑖V=\sum_{i}n_{i}L^{i}italic_V = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT with ni0subscript𝑛𝑖0n_{i}\geq 0italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 0, then the Euler class eVRU(T)subscript𝑒𝑉𝑅𝑈𝑇e_{V}\in RU(T)italic_e start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ∈ italic_R italic_U ( italic_T ) is given by

eV=i(1Li)ni.subscript𝑒𝑉subscriptproduct𝑖superscript1superscript𝐿𝑖subscript𝑛𝑖e_{V}=\prod_{i}(1-L^{i})^{n_{i}}.italic_e start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT .

6.2.2. Real circle-equivariant K𝐾Kitalic_K-theory

We now descend to KOT𝐾subscript𝑂𝑇KO_{T}italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. A virtual T𝑇Titalic_T-representation α=iniLi𝛼subscript𝑖subscript𝑛𝑖superscript𝐿𝑖\alpha=\sum_{i}n_{i}L^{i}italic_α = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT admits a Spin structure if and only if its second Stiefel–Whitney class

w2(α)inii(mod2)subscript𝑤2𝛼annotatedsubscript𝑖subscript𝑛𝑖𝑖pmod2w_{2}(\alpha)\equiv\sum_{i}n_{i}\cdot i\pmod{2}italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α ) ≡ ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⋅ italic_i start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER

vanishes. In this case α𝛼\alphaitalic_α is KO𝐾𝑂KOitalic_K italic_O-orientable, in the sense that there is an equivalence

F(Sα,KOT)F(S|α|,KOT).similar-to-or-equals𝐹superscript𝑆𝛼𝐾subscript𝑂𝑇𝐹superscript𝑆𝛼𝐾subscript𝑂𝑇F(S^{\alpha},KO_{T})\simeq F(S^{|\alpha|},KO_{T}).italic_F ( italic_S start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT , italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) ≃ italic_F ( italic_S start_POSTSUPERSCRIPT | italic_α | end_POSTSUPERSCRIPT , italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) .

If |α|𝛼|\alpha|| italic_α | is a multiple of 8888, then this is realized by an invertible Bott class

βαSpinπαKOT.superscriptsubscript𝛽𝛼Spinsubscript𝜋𝛼𝐾subscript𝑂𝑇\beta_{\alpha}^{\operatorname{Spin}}\in\pi_{\alpha}KO_{T}.italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Spin end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT .

However, if ψ1(α)αsuperscript𝜓1𝛼𝛼\psi^{-1}(\alpha)\neq\alphaitalic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_α ) ≠ italic_α, then the image of βαSpinsuperscriptsubscript𝛽𝛼Spin\beta_{\alpha}^{\operatorname{Spin}}italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Spin end_POSTSUPERSCRIPT under the complexification c:KOTKUT:𝑐𝐾subscript𝑂𝑇𝐾subscript𝑈𝑇c\colon KO_{T}\rightarrow KU_{T}italic_c : italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT → italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT is not guaranteed to be the complex Bott class βαπαKUTsubscript𝛽𝛼subscript𝜋𝛼𝐾subscript𝑈𝑇\beta_{\alpha}\in\pi_{\alpha}KU_{T}italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. Instead, the value of c(βαSpin)𝑐superscriptsubscript𝛽𝛼Spinc(\beta_{\alpha}^{\operatorname{Spin}})italic_c ( italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Spin end_POSTSUPERSCRIPT ) can be determined as follows. Abbreviate n=inii𝑛subscript𝑖subscript𝑛𝑖𝑖n=\sum_{i}n_{i}\cdot iitalic_n = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⋅ italic_i. Under the assumption that |α|𝛼|\alpha|| italic_α | is a multiple of 8888, we then have

ψ1(βα)=Lnβα.superscript𝜓1subscript𝛽𝛼superscript𝐿𝑛subscript𝛽𝛼\psi^{-1}(\beta_{\alpha})=L^{-n}\cdot\beta_{\alpha}.italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_L start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT .

It follows that ±Ln/2βαplus-or-minussuperscript𝐿𝑛2subscript𝛽𝛼\pm L^{-n/2}\beta_{\alpha}± italic_L start_POSTSUPERSCRIPT - italic_n / 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT are the only units in παKUTsubscript𝜋𝛼𝐾subscript𝑈𝑇\pi_{\alpha}KU_{T}italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT fixed by ψ1superscript𝜓1\psi^{-1}italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. As the Bott class is compatible with restriction, we must have reseT(c(βαSpin))=β|α|/2subscriptsuperscriptres𝑇𝑒𝑐superscriptsubscript𝛽𝛼Spinsuperscript𝛽𝛼2\operatorname{res}^{T}_{e}(c(\beta_{\alpha}^{\operatorname{Spin}}))=\beta^{|%\alpha|/2}roman_res start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_c ( italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Spin end_POSTSUPERSCRIPT ) ) = italic_β start_POSTSUPERSCRIPT | italic_α | / 2 end_POSTSUPERSCRIPT, and the only possibility is that

c(βαSpin)=Ln/2βα.𝑐superscriptsubscript𝛽𝛼Spinsuperscript𝐿𝑛2subscript𝛽𝛼c(\beta_{\alpha}^{\operatorname{Spin}})=L^{-n/2}\beta_{\alpha}.italic_c ( italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Spin end_POSTSUPERSCRIPT ) = italic_L start_POSTSUPERSCRIPT - italic_n / 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT .

We can now describe πKOTsubscript𝜋𝐾subscript𝑂𝑇\pi_{\star}KO_{T}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT in general. For any α=iniLi𝛼subscript𝑖subscript𝑛𝑖superscript𝐿𝑖\alpha=\sum_{i}n_{i}L^{i}italic_α = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT, either α𝛼\alphaitalic_α or α+L𝛼𝐿\alpha+Litalic_α + italic_L is SpinSpin\operatorname{Spin}roman_Spin, so the above discussion provides a KOT𝐾subscript𝑂𝑇KO_{T}italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT-linear equivalence between ΣαKOTsuperscriptΣ𝛼𝐾subscript𝑂𝑇\Sigma^{-\alpha}KO_{T}roman_Σ start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT and an integer suspension of one of KOT𝐾subscript𝑂𝑇KO_{T}italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT or ΣLKOTsuperscriptΣ𝐿𝐾subscript𝑂𝑇\Sigma^{-L}KO_{T}roman_Σ start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. Hence it suffices to describe the fixed points of these.

In the former case we have π0KOT=RO(T)subscript𝜋0𝐾subscript𝑂𝑇𝑅𝑂𝑇\pi_{0}KO_{T}=RO(T)italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = italic_R italic_O ( italic_T ) and in general

KOTKO{1}i>0KU,𝐾superscript𝑂𝑇direct-sum𝐾𝑂1subscriptdirect-sum𝑖0𝐾𝑈KO^{T}\cong KO\{1\}\oplus\bigoplus_{i>0}KU,italic_K italic_O start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ≅ italic_K italic_O { 1 } ⊕ ⨁ start_POSTSUBSCRIPT italic_i > 0 end_POSTSUBSCRIPT italic_K italic_U ,

where

Im(π2nKOTπ2nKUT)={({1}{Li+Li:i1})βn,n0(mod4),({2}{Li+Li:i1})βn,n2(mod4),{LiLi:i1}βn,n1,3(mod4).Imsubscript𝜋2𝑛𝐾subscript𝑂𝑇subscript𝜋2𝑛𝐾subscript𝑈𝑇casesdirect-sum1conditional-setsuperscript𝐿𝑖superscript𝐿𝑖𝑖1superscript𝛽𝑛𝑛annotated0pmod4direct-sum2conditional-setsuperscript𝐿𝑖superscript𝐿𝑖𝑖1superscript𝛽𝑛𝑛annotated2pmod4conditional-setsuperscript𝐿𝑖superscript𝐿𝑖𝑖1superscript𝛽𝑛𝑛1annotated3pmod4\operatorname{Im}(\pi_{2n}KO_{T}\rightarrow\pi_{2n}KU_{T})=\begin{cases}\left(%\mathbb{Z}\{1\}\oplus\mathbb{Z}\{L^{i}+L^{-i}:i\geq 1\}\right)\beta^{n},&n%\equiv 0\pmod{4},\\\left(\mathbb{Z}\{2\}\oplus\mathbb{Z}\{L^{i}+L^{-i}:i\geq 1\}\right)\beta^{n},%&n\equiv 2\pmod{4},\\\mathbb{Z}\{L^{i}-L^{-i}:i\geq 1\}\beta^{n},&n\equiv 1,3\pmod{4}.\end{cases}roman_Im ( italic_π start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) = { start_ROW start_CELL ( blackboard_Z { 1 } ⊕ blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT : italic_i ≥ 1 } ) italic_β start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL ( blackboard_Z { 2 } ⊕ blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT : italic_i ≥ 1 } ) italic_β start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 2 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT : italic_i ≥ 1 } italic_β start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 1 , 3 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER . end_CELL end_ROW

In the latter case, H>0(C2;π+LKUT)=0superscript𝐻absent0subscript𝐶2subscript𝜋absent𝐿𝐾subscript𝑈𝑇0H^{>0}(C_{2};\pi_{\ast+L}KU_{T})=0italic_H start_POSTSUPERSCRIPT > 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ + italic_L end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) = 0, and it follows

(ΣLKOT)Ti0KU,similar-to-or-equalssuperscriptsuperscriptΣ𝐿𝐾subscript𝑂𝑇𝑇subscriptdirect-sum𝑖0𝐾𝑈(\Sigma^{-L}KO_{T})^{T}\simeq\bigoplus_{i\geq 0}KU,( roman_Σ start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ≃ ⨁ start_POSTSUBSCRIPT italic_i ≥ 0 end_POSTSUBSCRIPT italic_K italic_U ,

where

Im(π2n+LKOTπ2n+LKUT)={{LiLi1}βnβL,n0(mod2),{Li+Li1}βnβL,n1(mod2).Imsubscript𝜋2𝑛𝐿𝐾subscript𝑂𝑇subscript𝜋2𝑛𝐿𝐾subscript𝑈𝑇casessuperscript𝐿𝑖superscript𝐿𝑖1superscript𝛽𝑛subscript𝛽𝐿𝑛annotated0pmod2superscript𝐿𝑖superscript𝐿𝑖1superscript𝛽𝑛subscript𝛽𝐿𝑛annotated1pmod2\operatorname{Im}(\pi_{2n+L}KO_{T}\rightarrow\pi_{2n+L}KU_{T})=\begin{cases}%\mathbb{Z}\{L^{i}-L^{-i-1}\}\beta^{n}\beta_{L},&n\equiv 0\pmod{2},\\\mathbb{Z}\{L^{i}+L^{-i-1}\}\beta^{n}\beta_{L},&n\equiv 1\pmod{2}.\end{cases}roman_Im ( italic_π start_POSTSUBSCRIPT 2 italic_n + italic_L end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT 2 italic_n + italic_L end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) = { start_ROW start_CELL blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT } italic_β start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT } italic_β start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , end_CELL start_CELL italic_n ≡ 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER . end_CELL end_ROW

This completely determines πKOTsubscript𝜋𝐾subscript𝑂𝑇\pi_{\star}KO_{T}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT.

6.2.3. Finite cyclic groups

Let CnTsubscript𝐶𝑛𝑇C_{n}\subset Titalic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⊂ italic_T denote the finite subgroup of order n𝑛nitalic_n, so

π0KUCnRU(Cn)[L]/(Ln1).subscript𝜋0𝐾subscript𝑈subscript𝐶𝑛𝑅𝑈subscript𝐶𝑛delimited-[]𝐿superscript𝐿𝑛1\pi_{0}KU_{C_{n}}\cong RU(C_{n})\cong\mathbb{Z}[L]/(L^{n}-1).italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≅ italic_R italic_U ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≅ blackboard_Z [ italic_L ] / ( italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - 1 ) .

If α=iniLi𝛼subscript𝑖subscript𝑛𝑖superscript𝐿𝑖\alpha=\sum_{i}n_{i}L^{i}italic_α = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT, then by restricting the above KOT𝐾subscript𝑂𝑇KO_{T}italic_K italic_O start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT-linear equivalences we obtain KOCn𝐾subscript𝑂subscript𝐶𝑛KO_{C_{n}}italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT-linear equivalences between ΣαKOCnsuperscriptΣ𝛼𝐾subscript𝑂subscript𝐶𝑛\Sigma^{\alpha}KO_{C_{n}}roman_Σ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT and an integer suspension of either KOCn𝐾subscript𝑂subscript𝐶𝑛KO_{C_{n}}italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT or ΣLKOCnsuperscriptΣ𝐿𝐾subscript𝑂subscript𝐶𝑛\Sigma^{-L}KO_{C_{n}}roman_Σ start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT. For n𝑛nitalic_n even, write σ𝜎\sigmaitalic_σ for the real sign representation of Cnsubscript𝐶𝑛C_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, satisfying σ=Ln/2tensor-product𝜎superscript𝐿𝑛2\mathbb{C}\otimes\sigma=L^{n/2}blackboard_C ⊗ italic_σ = italic_L start_POSTSUPERSCRIPT italic_n / 2 end_POSTSUPERSCRIPT. Then we can identify

KOCn{KO{1,σ}KUn/21,n0(mod2),KO{1}KU(n1)/1,n1(mod2),similar-to-or-equals𝐾superscript𝑂subscript𝐶𝑛casesdirect-sum𝐾𝑂1𝜎𝐾superscript𝑈𝑛21𝑛annotated0pmod2direct-sum𝐾𝑂1𝐾superscript𝑈𝑛11𝑛annotated1pmod2KO^{C_{n}}\simeq\begin{cases}KO\{1,\sigma\}\oplus KU^{n/2-1},&n\equiv 0\pmod{2%},\\KO\{1\}\oplus KU^{(n-1)/1},&n\equiv 1\pmod{2},\end{cases}italic_K italic_O start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL italic_K italic_O { 1 , italic_σ } ⊕ italic_K italic_U start_POSTSUPERSCRIPT italic_n / 2 - 1 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL italic_K italic_O { 1 } ⊕ italic_K italic_U start_POSTSUPERSCRIPT ( italic_n - 1 ) / 1 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW

and

(Σ2LKOCn)Cn{KUn/2,n0(mod2),KO{L(n1)/2βLβ1}KU(n1)/2,n1(mod2),similar-to-or-equalssuperscriptsuperscriptΣ2𝐿𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛cases𝐾superscript𝑈𝑛2𝑛annotated0pmod2direct-sum𝐾𝑂superscript𝐿𝑛12subscript𝛽𝐿superscript𝛽1𝐾superscript𝑈𝑛12𝑛annotated1pmod2(\Sigma^{2-L}KO_{C_{n}})^{C_{n}}\simeq\begin{cases}KU^{n/2},&n\equiv 0\pmod{2}%,\\KO\{L^{(n-1)/2}\beta_{L}\beta^{-1}\}\oplus KU^{(n-1)/2},&n\equiv 1\pmod{2},%\end{cases}( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL italic_K italic_U start_POSTSUPERSCRIPT italic_n / 2 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL italic_K italic_O { italic_L start_POSTSUPERSCRIPT ( italic_n - 1 ) / 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT } ⊕ italic_K italic_U start_POSTSUPERSCRIPT ( italic_n - 1 ) / 2 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW

with the images of πKOCnsubscript𝜋𝐾subscript𝑂subscript𝐶𝑛\pi_{\ast}KO_{C_{n}}italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT and π+LKOCnsubscript𝜋absent𝐿𝐾subscript𝑂subscript𝐶𝑛\pi_{\ast+L}KO_{C_{n}}italic_π start_POSTSUBSCRIPT ∗ + italic_L end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT in πKUCnsubscript𝜋𝐾subscript𝑈subscript𝐶𝑛\pi_{\star}KU_{C_{n}}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT easily determined as in the T𝑇Titalic_T-equivariant case. This completely describes πKOCnsubscript𝜋𝐾subscript𝑂subscript𝐶𝑛\pi_{\star}KO_{C_{n}}italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT if n𝑛nitalic_n is odd, but if n𝑛nitalic_n is even then one must also account for degrees involving σ𝜎\sigmaitalic_σ. For this reason it can be convenient to grade Cnsubscript𝐶𝑛C_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-equivariant computations over “RU(Cn)𝑅𝑈subscript𝐶𝑛RU(C_{n})italic_R italic_U ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) adjoined =1212\mathbb{R}=\frac{1}{2}\mathbb{C}blackboard_R = divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_C and σ=12Ln/2𝜎12superscript𝐿𝑛2\sigma=\frac{1}{2}L^{n/2}italic_σ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_L start_POSTSUPERSCRIPT italic_n / 2 end_POSTSUPERSCRIPT”, i.e.

({L0,,Ln1}{1,σ})/(L02,Ln/2σ),direct-sumsuperscript𝐿0superscript𝐿𝑛11𝜎superscript𝐿02superscript𝐿𝑛2𝜎\left(\mathbb{Z}\{L^{0},\ldots,L^{n-1}\}\oplus\mathbb{Z}\{1,\sigma\}\right)/(L%^{0}-2,~{}L^{n/2}-\sigma),( blackboard_Z { italic_L start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , … , italic_L start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT } ⊕ blackboard_Z { 1 , italic_σ } ) / ( italic_L start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT - 2 , italic_L start_POSTSUPERSCRIPT italic_n / 2 end_POSTSUPERSCRIPT - italic_σ ) ,

in order to incorporate a choice of complex structure into the grading. If α𝛼\alphaitalic_α is an element therein, then the above discussion gives a KOCn𝐾subscript𝑂subscript𝐶𝑛KO_{C_{n}}italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT-linear equivalence between ΣαKOCnsuperscriptΣ𝛼𝐾subscript𝑂subscript𝐶𝑛\Sigma^{\alpha}KO_{C_{n}}roman_Σ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT and an integer suspension of one of

KOCn,ΣLKOCn,ΣσKOCn,ΣLσKOCn.𝐾subscript𝑂subscript𝐶𝑛superscriptΣ𝐿𝐾subscript𝑂subscript𝐶𝑛superscriptΣ𝜎𝐾subscript𝑂subscript𝐶𝑛superscriptΣ𝐿𝜎𝐾subscript𝑂subscript𝐶𝑛KO_{C_{n}},\quad\Sigma^{-L}KO_{C_{n}},\quad\Sigma^{-\sigma}KO_{C_{n}},\quad%\Sigma^{-L-\sigma}KO_{C_{n}}.italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT , roman_Σ start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT , roman_Σ start_POSTSUPERSCRIPT - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT , roman_Σ start_POSTSUPERSCRIPT - italic_L - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

The first two cases were described above, and the latter two can be computed using the cofiber sequence

SσS0D(Cn/Cn/2+),superscript𝑆𝜎superscript𝑆0𝐷subscript𝐶𝑛subscript𝐶limit-from𝑛2S^{-\sigma}\rightarrow S^{0}\rightarrow D(C_{n}/C_{n/2+}),italic_S start_POSTSUPERSCRIPT - italic_σ end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_D ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT / italic_C start_POSTSUBSCRIPT italic_n / 2 + end_POSTSUBSCRIPT ) ,

ultimately allowing one to identify

(ΣσKOCn)Cn{KOΣ1KOKUn/4,n0(mod4),KO{1}KU(n2)/4,n2(mod4),similar-to-or-equalssuperscriptsuperscriptΣ𝜎𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛casesdirect-sum𝐾𝑂superscriptΣ1𝐾𝑂𝐾superscript𝑈𝑛4𝑛annotated0pmod4direct-sum𝐾𝑂1𝐾superscript𝑈𝑛24𝑛annotated2pmod4(\Sigma^{-\sigma}KO_{C_{n}})^{C_{n}}\simeq\begin{cases}KO\oplus\Sigma^{-1}KO%\oplus KU^{n/4},&n\equiv 0\pmod{4},\\KO\{1\}\oplus KU^{(n-2)/4},&n\equiv 2\pmod{4},\end{cases}( roman_Σ start_POSTSUPERSCRIPT - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL italic_K italic_O ⊕ roman_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_K italic_O ⊕ italic_K italic_U start_POSTSUPERSCRIPT italic_n / 4 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL italic_K italic_O { 1 } ⊕ italic_K italic_U start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 2 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER , end_CELL end_ROW

as an augmentation ideal of KOCn𝐾superscript𝑂subscript𝐶𝑛KO^{C_{n}}italic_K italic_O start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, and similarly

(Σ2LσKOCn)Cn{KUn/4,n0(mod4),KU(n2)/4Σ2KO,n2(mod4).similar-to-or-equalssuperscriptsuperscriptΣ2𝐿𝜎𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛cases𝐾superscript𝑈𝑛4𝑛annotated0pmod4direct-sum𝐾superscript𝑈𝑛24superscriptΣ2𝐾𝑂𝑛annotated2pmod4(\Sigma^{2-L-\sigma}KO_{C_{n}})^{C_{n}}\simeq\begin{cases}KU^{n/4},&n\equiv 0%\pmod{4},\\KU^{(n-2)/4}\oplus\Sigma^{-2}KO,&n\equiv 2\pmod{4}.\end{cases}( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≃ { start_ROW start_CELL italic_K italic_U start_POSTSUPERSCRIPT italic_n / 4 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL italic_K italic_U start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT ⊕ roman_Σ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_K italic_O , end_CELL start_CELL italic_n ≡ 2 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER . end_CELL end_ROW
6.2.1 Example.

Let us give details for the identification of (Σ2LσKOCn)CnsuperscriptsuperscriptΣ2𝐿𝜎𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛(\Sigma^{2-L-\sigma}KO_{C_{n}})^{C_{n}}( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT for n2(mod4)𝑛annotated2pmod4n\equiv 2\pmod{4}italic_n ≡ 2 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER, as the rest are similar or easier. The fiber sequence

(Σ2LσKOCn)Cn(Σ2LKOCn)Cnres(Σ2LKOCn/2)Cn/2,superscriptsuperscriptΣ2𝐿𝜎𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛superscriptsuperscriptΣ2𝐿𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛ressuperscriptsuperscriptΣ2𝐿𝐾subscript𝑂subscript𝐶𝑛2subscript𝐶𝑛2(\Sigma^{2-L-\sigma}KO_{C_{n}})^{C_{n}}\rightarrow(\Sigma^{2-L}KO_{C_{n}})^{C_%{n}}\xrightarrow{\operatorname{res}}(\Sigma^{2-L}KO_{C_{n/2}})^{C_{n/2}},( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT → ( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_ARROW overroman_res → end_ARROW ( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n / 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n / 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ,

may be identified as

(Σ2Lσ\displaystyle(\Sigma^{2-L-\sigma}( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L - italic_σ end_POSTSUPERSCRIPTKOCn)CnKU{(LiLi1)βLβ1:0i<n2}\displaystyle KO_{C_{n}})^{C_{n}}\rightarrow KU\{(L^{i}-L^{-i-1})\beta_{L}%\beta^{-1}:0\leq i<\tfrac{n}{2}\}italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT → italic_K italic_U { ( italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : 0 ≤ italic_i < divide start_ARG italic_n end_ARG start_ARG 2 end_ARG }
resKO{L(n2)/4β1βL}KU{(LiLi1)βLβ1:0i<n24},resabsentdirect-sum𝐾𝑂superscript𝐿𝑛24superscript𝛽1subscript𝛽𝐿𝐾𝑈conditional-setsuperscript𝐿𝑖superscript𝐿𝑖1subscript𝛽𝐿superscript𝛽10𝑖𝑛24\displaystyle\xrightarrow{\operatorname{res}}KO\{L^{(n-2)/4}\beta^{-1}\beta_{L%}\}\oplus KU\{(L^{i}-L^{-i-1})\beta_{L}\beta^{-1}:0\leq i<\tfrac{n-2}{4}\},start_ARROW overroman_res → end_ARROW italic_K italic_O { italic_L start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } ⊕ italic_K italic_U { ( italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : 0 ≤ italic_i < divide start_ARG italic_n - 2 end_ARG start_ARG 4 end_ARG } ,

where we name summands for how generators in π0subscript𝜋0\pi_{0}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are named after base change to KU𝐾𝑈KUitalic_K italic_U. We always have

resCn/2Cn((Li+Li1)βLβ1)=resCn/2Cn((Li+n/2+Lin/21)βLβ1).subscriptsuperscriptressubscript𝐶𝑛subscript𝐶𝑛2superscript𝐿𝑖superscript𝐿𝑖1subscript𝛽𝐿superscript𝛽1subscriptsuperscriptressubscript𝐶𝑛subscript𝐶𝑛2superscript𝐿𝑖𝑛2superscript𝐿𝑖𝑛21subscript𝛽𝐿superscript𝛽1\operatorname{res}^{C_{n}}_{C_{n/2}}((L^{i}+L^{-i-1})\beta_{L}\beta^{-1})=%\operatorname{res}^{C_{n}}_{C_{n/2}}((L^{i+n/2}+L^{-i-n/2-1})\beta_{L}\beta^{-%1}).roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n / 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ( italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n / 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ( italic_L start_POSTSUPERSCRIPT italic_i + italic_n / 2 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i - italic_n / 2 - 1 end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) .

If 0i<(n2)/40𝑖𝑛240\leq i<(n-2)/40 ≤ italic_i < ( italic_n - 2 ) / 4 then these terms are distinct before restriction, allowing us to split off a copy of

KU{((Li+Li1)(Li+n/2+Lin/21))βLβ1:0i<n24}𝐾𝑈conditional-setsuperscript𝐿𝑖superscript𝐿𝑖1superscript𝐿𝑖𝑛2superscript𝐿𝑖𝑛21subscript𝛽𝐿superscript𝛽10𝑖𝑛24KU\{((L^{i}+L^{-i-1})-(L^{i+n/2}+L^{-i-n/2-1}))\beta_{L}\beta^{-1}:0\leq i<%\tfrac{n-2}{4}\}italic_K italic_U { ( ( italic_L start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i - 1 end_POSTSUPERSCRIPT ) - ( italic_L start_POSTSUPERSCRIPT italic_i + italic_n / 2 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT - italic_i - italic_n / 2 - 1 end_POSTSUPERSCRIPT ) ) italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : 0 ≤ italic_i < divide start_ARG italic_n - 2 end_ARG start_ARG 4 end_ARG }

in the fiber. Thus (Σ2LσKOCn)CnKU(n2)/4Fsimilar-to-or-equalssuperscriptsuperscriptΣ2𝐿𝜎𝐾subscript𝑂subscript𝐶𝑛subscript𝐶𝑛direct-sum𝐾superscript𝑈𝑛24𝐹(\Sigma^{2-L-\sigma}KO_{C_{n}})^{C_{n}}\simeq KU^{(n-2)/4}\oplus F( roman_Σ start_POSTSUPERSCRIPT 2 - italic_L - italic_σ end_POSTSUPERSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≃ italic_K italic_U start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT ⊕ italic_F where

F=Fib(r:KU{(L(n2)/4+L(n2)/4)β1βL}KO{L(n2)/4β1βL}),𝐹Fib:𝑟𝐾𝑈superscript𝐿𝑛24superscript𝐿𝑛24superscript𝛽1subscript𝛽𝐿𝐾𝑂superscript𝐿𝑛24superscript𝛽1subscript𝛽𝐿F=\operatorname{Fib}\left(r\colon KU\{(L^{(n-2)/4}+L^{(-n-2)/4})\beta^{-1}%\beta_{L}\}\rightarrow KO\{L^{(n-2)/4}\beta^{-1}\beta_{L}\}\right),italic_F = roman_Fib ( italic_r : italic_K italic_U { ( italic_L start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT ( - italic_n - 2 ) / 4 end_POSTSUPERSCRIPT ) italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } → italic_K italic_O { italic_L start_POSTSUPERSCRIPT ( italic_n - 2 ) / 4 end_POSTSUPERSCRIPT italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } ) ,

which we are claiming is equivalent to Σ2KOsuperscriptΣ2𝐾𝑂\Sigma^{-2}KOroman_Σ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_K italic_O. Observe that r𝑟ritalic_r sends the generator of π4KUsubscript𝜋4𝐾𝑈\pi_{4}KUitalic_π start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_K italic_U to that of π4KOsubscript𝜋4𝐾𝑂\pi_{4}KOitalic_π start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_K italic_O. The Wood cofiber sequence ΣKO𝜂KOKU𝜂Σ𝐾𝑂𝐾𝑂𝐾𝑈\Sigma KO\xrightarrow{\eta}KO\rightarrow KUroman_Σ italic_K italic_O start_ARROW overitalic_η → end_ARROW italic_K italic_O → italic_K italic_U yields

odKO(KU,KO)KU,similar-to-or-equalssubscriptod𝐾𝑂𝐾𝑈𝐾𝑂𝐾𝑈\mathcal{M}\mathrm{od}_{KO}(KU,KO)\simeq KU,caligraphic_M roman_od start_POSTSUBSCRIPT italic_K italic_O end_POSTSUBSCRIPT ( italic_K italic_U , italic_K italic_O ) ≃ italic_K italic_U ,

so this in fact characterizes r𝑟ritalic_r. Thus r𝑟ritalic_r is equivalent to the twofold desuspension of the boundary map in the Wood cofiber sequence, implying FΣ2KOsimilar-to-or-equals𝐹superscriptΣ2𝐾𝑂F\simeq\Sigma^{-2}KOitalic_F ≃ roman_Σ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_K italic_O as claimed.\triangleleft

6.2.4. Examples

There is already an extensive literature on the K𝐾Kitalic_K-theory and J𝐽Jitalic_J-theory of the lens spaces S(kL)/Cn𝑆𝑘𝐿subscript𝐶𝑛S(kL)/C_{n}italic_S ( italic_k italic_L ) / italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, more than we can hope to summarize here. We just give some small examples illustrating general phenomena relevant to our study of periodicities.

6.2.2 Example.

Take G=C2𝐺subscript𝐶2G=C_{2}italic_G = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. The behavior of the uσ=t1σsubscript𝑢𝜎subscript𝑡1𝜎u_{\sigma}=t_{1-\sigma}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT 1 - italic_σ end_POSTSUBSCRIPT-elements in π2γ(m)(1σ)C(aσm+1)subscript𝜋superscript2𝛾𝑚1𝜎𝐶superscriptsubscript𝑎𝜎𝑚1\pi_{2^{\gamma(m)}(1-\sigma)}C(a_{\sigma}^{m+1})italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_γ ( italic_m ) end_POSTSUPERSCRIPT ( 1 - italic_σ ) end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) discussed in the introduction was analyzed in detail by Araki and Iriye in [AI82, Section 3]. We give an example to highlight the nature of compatibility between these elements as m𝑚mitalic_m varies.

As 4σ=σ4𝜎subscripttensor-product𝜎4\sigma=\mathbb{H}\otimes_{\mathbb{R}}\sigma4 italic_σ = blackboard_H ⊗ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT italic_σ is 4444-dimensional quaternionic, we have

π4σKOC2RO(C2)2β4σ,π8σKOC2RO(C2)β8σ,formulae-sequencesubscript𝜋4𝜎𝐾subscript𝑂subscript𝐶2𝑅𝑂subscript𝐶22subscript𝛽4𝜎subscript𝜋8𝜎𝐾subscript𝑂subscript𝐶2𝑅𝑂subscript𝐶2subscript𝛽8𝜎\pi_{4\sigma}KO_{C_{2}}\cong RO(C_{2})\cdot 2\beta_{4\sigma},\qquad\pi_{8%\sigma}KO_{C_{2}}\cong RO(C_{2})\cdot\beta_{8\sigma},italic_π start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≅ italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT , italic_π start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≅ italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⋅ italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ,

where

aσ4β8σ=(1σ)2β4σ,aσ42β4σ=4(1σ),aσ8β8σ=16(1σ).formulae-sequencesuperscriptsubscript𝑎𝜎4subscript𝛽8𝜎1𝜎2subscript𝛽4𝜎formulae-sequencesuperscriptsubscript𝑎𝜎42subscript𝛽4𝜎41𝜎superscriptsubscript𝑎𝜎8subscript𝛽8𝜎161𝜎a_{\sigma}^{4}\cdot\beta_{8\sigma}=(1-\sigma)\cdot 2\beta_{4\sigma},\quad a_{%\sigma}^{4}\cdot 2\beta_{4\sigma}=4(1-\sigma),\quad a_{\sigma}^{8}\cdot\beta_{%8\sigma}=16(1-\sigma).italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT = ( 1 - italic_σ ) ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT = 4 ( 1 - italic_σ ) , italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT = 16 ( 1 - italic_σ ) .

Hence there exist uσsubscript𝑢𝜎u_{\sigma}italic_u start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT-elements

u4σ=J(2β4σ)π4(1σ)C(aσ4),u8σ=J(β8σ)π8(1σ)C(aσ8),formulae-sequencesubscript𝑢4𝜎𝐽2subscript𝛽4𝜎subscript𝜋41𝜎𝐶superscriptsubscript𝑎𝜎4subscript𝑢8𝜎𝐽subscript𝛽8𝜎subscript𝜋81𝜎𝐶superscriptsubscript𝑎𝜎8u_{4\sigma}=J(2\beta_{4\sigma})\in\pi_{4(1-\sigma)}C(a_{\sigma}^{4}),\qquad u_%{8\sigma}=J(\beta_{8\sigma})\in\pi_{8(1-\sigma)}C(a_{\sigma}^{8}),italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT = italic_J ( 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 4 ( 1 - italic_σ ) end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) , italic_u start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT = italic_J ( italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 8 ( 1 - italic_σ ) end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ) ,

and up to choices of orientations these satisfy

reseC2((u4σ))=νπ3S,reseC2((u8σ))=σπ7S.formulae-sequencesubscriptsuperscriptressubscript𝐶2𝑒subscript𝑢4𝜎𝜈subscript𝜋3𝑆subscriptsuperscriptressubscript𝐶2𝑒subscript𝑢8𝜎𝜎subscript𝜋7𝑆\operatorname{res}^{C_{2}}_{e}(\partial(u_{4\sigma}))=\nu\in\pi_{3}S,\qquad%\operatorname{res}^{C_{2}}_{e}(\partial(u_{8\sigma}))=\sigma\in\pi_{7}S.roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT ) ) = italic_ν ∈ italic_π start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_S , roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) ) = italic_σ ∈ italic_π start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_S .

As reseC2((u4σ2))=2ν0subscriptsuperscriptressubscript𝐶2𝑒superscriptsubscript𝑢4𝜎22𝜈0\operatorname{res}^{C_{2}}_{e}(\partial(u_{4\sigma}^{2}))=2\nu\neq 0roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) = 2 italic_ν ≠ 0, it follows u4σ2superscriptsubscript𝑢4𝜎2u_{4\sigma}^{2}italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT cannot lift to C(aσ5)𝐶superscriptsubscript𝑎𝜎5C(a_{\sigma}^{5})italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ), so the map q:C(aσ8)C(aσ4):𝑞𝐶superscriptsubscript𝑎𝜎8𝐶superscriptsubscript𝑎𝜎4q\colon C(a_{\sigma}^{8})\rightarrow C(a_{\sigma}^{4})italic_q : italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ) → italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) must satisfy q(u8σ)u4σ2𝑞subscript𝑢8𝜎superscriptsubscript𝑢4𝜎2q(u_{8\sigma})\neq u_{4\sigma}^{2}italic_q ( italic_u start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) ≠ italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The difference ϵ=u4σ2q(u8σ)1italic-ϵsuperscriptsubscript𝑢4𝜎2𝑞superscriptsubscript𝑢8𝜎1\epsilon=u_{4\sigma}^{2}\cdot q(u_{8\sigma})^{-1}italic_ϵ = italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ italic_q ( italic_u start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is measured by

ϵitalic-ϵ\displaystyle\epsilonitalic_ϵ=u4σ2q(u8σ)1=J(2β4σ)2J(aσ4β8σ)1absentsuperscriptsubscript𝑢4𝜎2𝑞superscriptsubscript𝑢8𝜎1𝐽superscript2subscript𝛽4𝜎2𝐽superscriptsuperscriptsubscript𝑎𝜎4subscript𝛽8𝜎1\displaystyle=u_{4\sigma}^{2}\cdot q(u_{8\sigma})^{-1}=J(2\beta_{4\sigma})^{2}%\cdot J(a_{\sigma}^{4}\beta_{8\sigma})^{-1}= italic_u start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ italic_q ( italic_u start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_J ( 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ italic_J ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
=J(22β4σaσ4β8σ)=J((1+σ)2β4σ).absent𝐽22subscript𝛽4𝜎superscriptsubscript𝑎𝜎4subscript𝛽8𝜎𝐽1𝜎2subscript𝛽4𝜎\displaystyle=J(2\cdot 2\beta_{4\sigma}-a_{\sigma}^{4}\beta_{8\sigma})=J((1+%\sigma)\cdot 2\beta_{4\sigma}).= italic_J ( 2 ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 8 italic_σ end_POSTSUBSCRIPT ) = italic_J ( ( 1 + italic_σ ) ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT ) .

Thus ϵπ0C(aσ4)×italic-ϵsubscript𝜋0𝐶superscriptsuperscriptsubscript𝑎𝜎4\epsilon\in\pi_{0}C(a_{\sigma}^{4})^{\times}italic_ϵ ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT is a class satisfying reseC2((ϵ))=2νsubscriptsuperscriptressubscript𝐶2𝑒italic-ϵ2𝜈\operatorname{res}^{C_{2}}_{e}(\partial(\epsilon))=2\nuroman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_ϵ ) ) = 2 italic_ν. In fact

J((1+σ)2β4σ)=J(treC2(2β2))=NeC2(J(2β2))𝐽1𝜎2subscript𝛽4𝜎𝐽superscriptsubscripttr𝑒subscript𝐶22superscript𝛽2superscriptsubscript𝑁𝑒subscript𝐶2𝐽2superscript𝛽2J((1+\sigma)\cdot 2\beta_{4\sigma})=J(\operatorname{tr}_{e}^{C_{2}}(2\beta^{2}%))=N_{e}^{C_{2}}(J(2\beta^{2}))italic_J ( ( 1 + italic_σ ) ⋅ 2 italic_β start_POSTSUBSCRIPT 4 italic_σ end_POSTSUBSCRIPT ) = italic_J ( roman_tr start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 2 italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) = italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_J ( 2 italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) )

where NeC2:π0eC(aσ4)π0C2C(aσ4):superscriptsubscript𝑁𝑒subscript𝐶2superscriptsubscript𝜋0𝑒𝐶superscriptsubscript𝑎𝜎4superscriptsubscript𝜋0subscript𝐶2𝐶superscriptsubscript𝑎𝜎4N_{e}^{C_{2}}\colon\pi_{0}^{e}C(a_{\sigma}^{4})\rightarrow\pi_{0}^{C_{2}}C(a_{%\sigma}^{4})italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT : italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) is the norm, and where if we write π0eC(aσ4)π0D(S+3)[ν¯]/(ν¯2,24ν¯)superscriptsubscript𝜋0𝑒𝐶superscriptsubscript𝑎𝜎4subscript𝜋0𝐷subscriptsuperscript𝑆3delimited-[]¯𝜈superscript¯𝜈224¯𝜈\pi_{0}^{e}C(a_{\sigma}^{4})\cong\pi_{0}D(S^{3}_{+})\cong\mathbb{Z}[\overline{%\nu}]/(\overline{\nu}^{2},24\overline{\nu})italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ≅ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_D ( italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ≅ blackboard_Z [ over¯ start_ARG italic_ν end_ARG ] / ( over¯ start_ARG italic_ν end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 24 over¯ start_ARG italic_ν end_ARG ) then J(2β2)=1+ν¯𝐽2superscript𝛽21¯𝜈J(2\beta^{2})=1+\overline{\nu}italic_J ( 2 italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = 1 + over¯ start_ARG italic_ν end_ARG.\triangleleft

6.2.3 Example.

We give an example of the remarks at the end of Subsection5.1. We were guided to existence of an example like this by [KS77]. Take G=C8𝐺subscript𝐶8G=C_{8}italic_G = italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and let

ρ=L+L3+L5+L7.𝜌𝐿superscript𝐿3superscript𝐿5superscript𝐿7\rho=L+L^{3}+L^{5}+L^{7}.italic_ρ = italic_L + italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT .

This representation is quaternionic of real dimension 8888, and thus the Bott class βρπρKUC8subscript𝛽𝜌subscript𝜋𝜌𝐾subscript𝑈subscript𝐶8\beta_{\rho}\in\pi_{\rho}KU_{C_{8}}italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT descends to KOC8𝐾subscript𝑂subscript𝐶8KO_{C_{8}}italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, yielding

πρKOC8ROC8{βρ}.subscript𝜋𝜌𝐾subscript𝑂subscript𝐶8𝑅subscript𝑂subscript𝐶8subscript𝛽𝜌\pi_{\rho}KO_{C_{8}}\cong RO_{C_{8}}\{\beta_{\rho}\}.italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≅ italic_R italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT { italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT } .

Set ROC8={1,σ,λ,μ,μ}𝑅subscript𝑂subscript𝐶81𝜎𝜆𝜇superscript𝜇RO_{C_{8}}=\mathbb{Z}\{1,\sigma,\lambda,\mu,\mu^{\prime}\}italic_R italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = blackboard_Z { 1 , italic_σ , italic_λ , italic_μ , italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT } where

σ=L4,λ=L2+L6,μ=L+L7,μ=L3+L5.formulae-sequencetensor-product𝜎superscript𝐿4formulae-sequencetensor-product𝜆superscript𝐿2superscript𝐿6formulae-sequencetensor-product𝜇𝐿superscript𝐿7tensor-productsuperscript𝜇superscript𝐿3superscript𝐿5\mathbb{C}\otimes\sigma=L^{4},\quad\mathbb{C}\otimes\lambda=L^{2}+L^{6},\quad%\mathbb{C}\otimes\mu=L+L^{7},\quad\mathbb{C}\otimes\mu^{\prime}=L^{3}+L^{5}.blackboard_C ⊗ italic_σ = italic_L start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , blackboard_C ⊗ italic_λ = italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT , blackboard_C ⊗ italic_μ = italic_L + italic_L start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT , blackboard_C ⊗ italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT .

Then ψ3(μ)=μsuperscript𝜓3𝜇superscript𝜇\psi^{3}(\mu)=\mu^{\prime}italic_ψ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_μ ) = italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT implies Sμ[13]Sμ[13]similar-to-or-equalssuperscript𝑆𝜇delimited-[]13superscript𝑆superscript𝜇delimited-[]13S^{\mu}[\tfrac{1}{3}]\simeq S^{\mu^{\prime}}[\tfrac{1}{3}]italic_S start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG 3 end_ARG ] ≃ italic_S start_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG 3 end_ARG ], and (ψ3ψ1)2(μ)=2(μμ)superscriptsuperscript𝜓3superscript𝜓12𝜇2𝜇superscript𝜇(\psi^{3}-\psi^{1})^{2}(\mu)=2(\mu-\mu^{\prime})( italic_ψ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_ψ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_μ ) = 2 ( italic_μ - italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) implies S2μS2μsimilar-to-or-equalssuperscript𝑆2𝜇superscript𝑆2superscript𝜇S^{2\mu}\simeq S^{2\mu^{\prime}}italic_S start_POSTSUPERSCRIPT 2 italic_μ end_POSTSUPERSCRIPT ≃ italic_S start_POSTSUPERSCRIPT 2 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT. If we identify μ𝜇\muitalic_μ and μsuperscript𝜇\mu^{\prime}italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT as the underlying real representations of L7superscript𝐿7L^{7}italic_L start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT and L5superscript𝐿5L^{5}italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT respectively, then a particular choice of invertible element ψ3πμμSC8[13]subscript𝜓3subscript𝜋superscript𝜇𝜇subscript𝑆subscript𝐶8delimited-[]13\psi_{3}\in\pi_{\mu^{\prime}-\mu}S_{C_{8}}[\tfrac{1}{3}]italic_ψ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_μ end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ divide start_ARG 1 end_ARG start_ARG 3 end_ARG ] is constructed in 5.1.2.

The Euler class of ρ𝜌\rhoitalic_ρ is given by

eρ=(1L)(1L3)(1L5)(1L7)=4+2σ+2λ2μ2μ.subscript𝑒𝜌1𝐿1superscript𝐿31superscript𝐿51superscript𝐿742𝜎2𝜆2𝜇2superscript𝜇e_{\rho}=(1-L)(1-L^{3})(1-L^{5})(1-L^{7})=4+2\sigma+2\lambda-2\mu-2\mu^{\prime}.italic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT = ( 1 - italic_L ) ( 1 - italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ( 1 - italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ) ( 1 - italic_L start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT ) = 4 + 2 italic_σ + 2 italic_λ - 2 italic_μ - 2 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT .

A calculation reveals that 2μ2𝜇2-\mu2 - italic_μ has order 16161616 in RO(C8)/(eρ)𝑅𝑂subscript𝐶8subscript𝑒𝜌RO(C_{8})/(e_{\rho})italic_R italic_O ( italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) / ( italic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ), with

16(2μ)=eρ(115σλ4μ+4μ);162𝜇subscript𝑒𝜌115𝜎𝜆4𝜇4superscript𝜇16(2-\mu)=e_{\rho}\cdot(11-5\sigma-\lambda-4\mu+4\mu^{\prime});16 ( 2 - italic_μ ) = italic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ⋅ ( 11 - 5 italic_σ - italic_λ - 4 italic_μ + 4 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ;

so the best that the J𝐽Jitalic_J-hom*omorphism gives is an invertible element

u16μ=J((115σλ4μ+4μ)βρ)π16(2μ)C8C(aρ).subscript𝑢16𝜇𝐽115𝜎𝜆4𝜇4superscript𝜇subscript𝛽𝜌superscriptsubscript𝜋162𝜇subscript𝐶8𝐶subscript𝑎𝜌u_{16\mu}=J((11-5\sigma-\lambda-4\mu+4\mu^{\prime})\beta_{\rho})\in\pi_{16(2-%\mu)}^{C_{8}}C(a_{\rho}).italic_u start_POSTSUBSCRIPT 16 italic_μ end_POSTSUBSCRIPT = italic_J ( ( 11 - 5 italic_σ - italic_λ - 4 italic_μ + 4 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 16 ( 2 - italic_μ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) .

As reseC8((115σλ4μ+4μ)βρ)=4β4π8KOsubscriptsuperscriptressubscript𝐶8𝑒115𝜎𝜆4𝜇4superscript𝜇subscript𝛽𝜌4superscript𝛽4subscript𝜋8𝐾𝑂\operatorname{res}^{C_{8}}_{e}((11-5\sigma-\lambda-4\mu+4\mu^{\prime})\beta_{%\rho})=4\beta^{4}\in\pi_{8}KOroman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ( 11 - 5 italic_σ - italic_λ - 4 italic_μ + 4 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) = 4 italic_β start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_K italic_O, this element satisfies reseC8((u16μ))=±4σsubscriptsuperscriptressubscript𝐶8𝑒subscript𝑢16𝜇plus-or-minus4𝜎\operatorname{res}^{C_{8}}_{e}(\partial(u_{16\mu}))=\pm 4\sigmaroman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 16 italic_μ end_POSTSUBSCRIPT ) ) = ± 4 italic_σ, and in the context of Theorem1.2.6 this yields a differential

d8(uμ16)=±4σaρuρ1uμ16subscript𝑑8superscriptsubscript𝑢𝜇16plus-or-minus4𝜎subscript𝑎𝜌superscriptsubscript𝑢𝜌1superscriptsubscript𝑢𝜇16d_{8}(u_{\mu}^{16})=\pm 4\sigma\cdot a_{\rho}u_{\rho}^{-1}\cdot u_{\mu}^{16}italic_d start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT ) = ± 4 italic_σ ⋅ italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT

in the C8subscript𝐶8C_{8}italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-hom*otopy fixed point spectral sequence. Here, aρuρ1subscript𝑎𝜌superscriptsubscript𝑢𝜌1a_{\rho}u_{\rho}^{-1}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT generates H8(C8;π0S)superscript𝐻8subscript𝐶8subscript𝜋0𝑆H^{8}(C_{8};\pi_{0}S)italic_H start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_S ).

On the other hand, 8μ8𝜇8\mu8 italic_μ is locally J𝐽Jitalic_J-equivalent to 3μ+5μ3𝜇5superscript𝜇3\mu+5\mu^{\prime}3 italic_μ + 5 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, and another calculation shows

16(3μ+5μ)=eρ(53σλμ),163𝜇5superscript𝜇subscript𝑒𝜌53𝜎𝜆superscript𝜇16-(3\mu+5\mu^{\prime})=e_{\rho}\cdot(5-3\sigma-\lambda-\mu^{\prime}),16 - ( 3 italic_μ + 5 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ⋅ ( 5 - 3 italic_σ - italic_λ - italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

thus giving u3μ+5μπ163μ5μC8C(aρ)subscript𝑢3𝜇5superscript𝜇superscriptsubscript𝜋163𝜇5superscript𝜇subscript𝐶8𝐶subscript𝑎𝜌u_{3\mu+5\mu^{\prime}}\in\pi_{16-3\mu-5\mu^{\prime}}^{C_{8}}C(a_{\rho})italic_u start_POSTSUBSCRIPT 3 italic_μ + 5 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 16 - 3 italic_μ - 5 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ). Hence we obtain an invertible element

ψ35u3μ+5μπ8(2μ)C8C(aρ)[13]superscriptsubscript𝜓35subscript𝑢3𝜇5superscript𝜇superscriptsubscript𝜋82𝜇subscript𝐶8𝐶subscript𝑎𝜌delimited-[]13\psi_{3}^{5}\cdot u_{3\mu+5\mu^{\prime}}\in\pi_{8(2-\mu)}^{C_{8}}C(a_{\rho})[%\tfrac{1}{3}]italic_ψ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT 3 italic_μ + 5 italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 8 ( 2 - italic_μ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) [ divide start_ARG 1 end_ARG start_ARG 3 end_ARG ]

playing the role of “u8μsubscript𝑢8𝜇u_{8\mu}italic_u start_POSTSUBSCRIPT 8 italic_μ end_POSTSUBSCRIPT”. In the context of Theorem1.2.6, by 5.1.5 this yields a differential

d8(uμ8)=±2σaρuρ1uμ8subscript𝑑8superscriptsubscript𝑢𝜇8plus-or-minus2𝜎subscript𝑎𝜌superscriptsubscript𝑢𝜌1superscriptsubscript𝑢𝜇8d_{8}(u_{\mu}^{8})=\pm 2\sigma\cdot a_{\rho}u_{\rho}^{-1}\cdot u_{\mu}^{8}italic_d start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ) = ± 2 italic_σ ⋅ italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT

in the C8subscript𝐶8C_{8}italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-hom*otopy fixed point spectral sequence, refining the above differential on uμ16superscriptsubscript𝑢𝜇16u_{\mu}^{16}italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT.\triangleleft

6.2.4 Example.

Let G=C6𝐺subscript𝐶6G=C_{6}italic_G = italic_C start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT and ρ=L+L5𝜌𝐿superscript𝐿5\rho=L+L^{5}italic_ρ = italic_L + italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT. Then α=(1L2L3+L5)𝛼1superscript𝐿2superscript𝐿3superscript𝐿5\alpha=(1-L^{2}-L^{3}+L^{5})italic_α = ( 1 - italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ) satisfies

eρα=α,subscript𝑒𝜌𝛼𝛼e_{\rho}\cdot\alpha=\alpha,italic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ⋅ italic_α = italic_α ,

so there exist compatible tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements in παC6C(aρn)superscriptsubscript𝜋𝛼subscript𝐶6𝐶superscriptsubscript𝑎𝜌𝑛\pi_{\alpha}^{C_{6}}C(a_{\rho}^{n})italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) for all n1𝑛1n\geq 1italic_n ≥ 1. As S(ρ)𝑆𝜌S(\infty\rho)italic_S ( ∞ italic_ρ ) is a model for EC6𝐸subscript𝐶6EC_{6}italic_E italic_C start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT, by taking n𝑛n\rightarrow\inftyitalic_n → ∞ this produces a tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element in the completion F(EC6+,SC6)𝐹𝐸subscript𝐶limit-from6subscript𝑆subscript𝐶6F(EC_{6+},S_{C_{6}})italic_F ( italic_E italic_C start_POSTSUBSCRIPT 6 + end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ). This phenomenon is generic for composite order groups, corresponding to the kernel of the completion map RU(G)KU0BG𝑅𝑈𝐺𝐾superscript𝑈0𝐵𝐺RU(G)\rightarrow KU^{0}BGitalic_R italic_U ( italic_G ) → italic_K italic_U start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_B italic_G.\triangleleft

6.3. Example: the symmetric group on 3333 letters

We give an example with an orthogonal irreducible. Let G=Σ3𝐺subscriptΣ3G=\Sigma_{3}italic_G = roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT be the symmetric group on 3333 letters. Write σ𝜎\sigmaitalic_σ for its real sign representation and λ𝜆\lambdaitalic_λ for its reduced real canonical permutation representation, so that

RO(Σ3){1,σ,λ},σ2=1,σλ=λ,λ2=1+σ+λ.formulae-sequence𝑅𝑂subscriptΣ31𝜎𝜆formulae-sequencesuperscript𝜎21formulae-sequence𝜎𝜆𝜆superscript𝜆21𝜎𝜆RO(\Sigma_{3})\cong\mathbb{Z}\{1,\sigma,\lambda\},\qquad\sigma^{2}=1,\qquad%\sigma\lambda=\lambda,\qquad\lambda^{2}=1+\sigma+\lambda.italic_R italic_O ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ≅ blackboard_Z { 1 , italic_σ , italic_λ } , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 , italic_σ italic_λ = italic_λ , italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 + italic_σ + italic_λ .

Complexification RO(Σ3)RU(Σ3)𝑅𝑂subscriptΣ3𝑅𝑈subscriptΣ3RO(\Sigma_{3})\rightarrow RU(\Sigma_{3})italic_R italic_O ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) → italic_R italic_U ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) is an isomorphism, and we write RU(Σ3)={1,σ,λ}𝑅𝑈subscriptΣ31subscript𝜎subscript𝜆RU(\Sigma_{3})=\mathbb{Z}\{1,\sigma_{\mathbb{C}},\lambda_{\mathbb{C}}\}italic_R italic_U ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT , italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT }. Consider the sequence

.

The composite is determined by

aλ2βλ=aλβλ=eλ=1λ+σ,superscriptsubscript𝑎𝜆2subscript𝛽subscript𝜆subscript𝑎subscript𝜆subscript𝛽subscript𝜆subscript𝑒subscript𝜆1subscript𝜆subscript𝜎a_{\lambda}^{2}\beta_{\lambda_{\mathbb{C}}}=a_{\lambda_{\mathbb{C}}}\beta_{%\lambda_{\mathbb{C}}}=e_{\lambda_{\mathbb{C}}}=1-\lambda_{\mathbb{C}}+\sigma_{%\mathbb{C}},italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 1 - italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ,

and has image the rank 1111 subspace {1λ+σ}RU(Σ3)1subscript𝜆subscript𝜎𝑅𝑈subscriptΣ3\mathbb{Z}\{1-\lambda_{\mathbb{C}}+\sigma_{\mathbb{C}}\}\subset RU(\Sigma_{3})blackboard_Z { 1 - italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT } ⊂ italic_R italic_U ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ). As πλKUΣ3subscript𝜋𝜆𝐾subscript𝑈subscriptΣ3\pi_{\lambda}KU_{\Sigma_{3}}italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a free abelian group of rank 1111 [Kar02], the only possibility is that πλKUΣ3{aλβλ}subscript𝜋𝜆𝐾subscript𝑈subscriptΣ3subscript𝑎𝜆subscript𝛽subscript𝜆\pi_{\lambda}KU_{\Sigma_{3}}\cong\mathbb{Z}\{a_{\lambda}\beta_{\lambda_{%\mathbb{C}}}\}italic_π start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≅ blackboard_Z { italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT } with σaλ=aλsubscript𝜎subscript𝑎𝜆subscript𝑎𝜆\sigma_{\mathbb{C}}a_{\lambda}=a_{\lambda}italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT and λaλ=aλsubscript𝜆subscript𝑎𝜆subscript𝑎𝜆\lambda_{\mathbb{C}}a_{\lambda}=-a_{\lambda}italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT = - italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT.Thus πλKUΣ3subscript𝜋absent𝜆𝐾subscript𝑈subscriptΣ3\pi_{\ast\lambda}KU_{\Sigma_{3}}italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT has the 2222-periodic pattern

.

Complex conjugation acts trivially on RU(Σ3)𝑅𝑈subscriptΣ3RU(\Sigma_{3})italic_R italic_U ( roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ), and using resC2Σ3(λ)1+σsubscriptsuperscriptressubscriptΣ3subscript𝐶2𝜆1𝜎\operatorname{res}^{\Sigma_{3}}_{C_{2}}(\lambda)\cong 1+\sigmaroman_res start_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_λ ) ≅ 1 + italic_σ nd resC3Σ3(λ)L+L1subscriptsuperscriptressubscriptΣ3subscript𝐶3subscript𝜆𝐿superscript𝐿1\operatorname{res}^{\Sigma_{3}}_{C_{3}}(\lambda_{\mathbb{C}})\cong L+L^{-1}roman_res start_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ) ≅ italic_L + italic_L start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT we find

ψ1(βλ)=σβλ.superscript𝜓1subscript𝛽subscript𝜆subscript𝜎subscript𝛽subscript𝜆\psi^{-1}(\beta_{\lambda_{\mathbb{C}}})=\sigma_{\mathbb{C}}\beta_{\lambda_{%\mathbb{C}}}.italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

Thus H0(C2;πλKUΣ3)superscript𝐻0subscript𝐶2subscript𝜋absent𝜆𝐾subscript𝑈subscriptΣ3H^{0}(C_{2};\pi_{\ast\lambda}KU_{\Sigma_{3}})italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) is 4444-periodic with

H0(C2;πmλKUΣ3)={{1,σ,λ},m=0,{aλβλ},m=1,{1+σ,λ}βλ,m=2,{aλβλ2},m=3,superscript𝐻0subscript𝐶2subscript𝜋𝑚𝜆𝐾subscript𝑈subscriptΣ3cases1subscript𝜎subscript𝜆𝑚0subscript𝑎𝜆subscript𝛽subscript𝜆𝑚11subscript𝜎subscript𝜆subscript𝛽subscript𝜆𝑚2subscript𝑎𝜆superscriptsubscript𝛽subscript𝜆2𝑚3H^{0}(C_{2};\pi_{m\lambda}KU_{\Sigma_{3}})=\begin{cases}\mathbb{Z}\{1,\sigma_{%\mathbb{C}},\lambda_{\mathbb{C}}\},&m=0,\\\mathbb{Z}\{a_{\lambda}\beta_{\lambda_{\mathbb{C}}}\},&m=1,\\\mathbb{Z}\{1+\sigma_{\mathbb{C}},\lambda_{\mathbb{C}}\}\beta_{\lambda_{%\mathbb{C}}},&m=2,\\\mathbb{Z}\{a_{\lambda}\beta_{\lambda_{\mathbb{C}}}^{2}\},&m=3,\end{cases}italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT italic_m italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = { start_ROW start_CELL blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT , italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT } , end_CELL start_CELL italic_m = 0 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT } , end_CELL start_CELL italic_m = 1 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { 1 + italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT , italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT } italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT , end_CELL start_CELL italic_m = 2 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } , end_CELL start_CELL italic_m = 3 , end_CELL end_ROW

We claim that H0(C2;πλKUΣ3)superscript𝐻0subscript𝐶2subscript𝜋absent𝜆𝐾subscript𝑈subscriptΣ3H^{0}(C_{2};\pi_{\ast\lambda}KU_{\Sigma_{3}})italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) consists of permanent cycles. As 4λ=λ4𝜆subscripttensor-product𝜆4\lambda=\lambda\otimes_{\mathbb{R}}\mathbb{H}4 italic_λ = italic_λ ⊗ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_H is 8888-dimensional quaternionic, we reduce to considering H0(C2;πmλKUΣ3)superscript𝐻0subscript𝐶2subscript𝜋𝑚𝜆𝐾subscript𝑈subscriptΣ3H^{0}(C_{2};\pi_{m\lambda}KU_{\Sigma_{3}})italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT italic_m italic_λ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) for m{0,1,2,3}𝑚0123m\in\{0,1,2,3\}italic_m ∈ { 0 , 1 , 2 , 3 }. As η(1+σ)βλ=0𝜂1subscript𝜎subscript𝛽subscript𝜆0\eta\cdot(1+\sigma_{\mathbb{C}})\beta_{\lambda_{\mathbb{C}}}=0italic_η ⋅ ( 1 + italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 0, necessarily (1+σ)βλ1subscript𝜎subscript𝛽subscript𝜆(1+\sigma_{\mathbb{C}})\beta_{\lambda_{\mathbb{C}}}( 1 + italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a permanent cycle. As aλsubscript𝑎𝜆a_{\lambda}italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT is a permanent cycle and

aλ,aλβλ=1,aλ2,λβλ=1,aλ3,aλβλ2=3,formulae-sequencesubscript𝑎𝜆subscript𝑎𝜆subscript𝛽subscript𝜆1formulae-sequencesuperscriptsubscript𝑎𝜆2subscript𝜆subscript𝛽subscript𝜆1superscriptsubscript𝑎𝜆3subscript𝑎𝜆superscriptsubscript𝛽subscript𝜆23\langle a_{\lambda},a_{\lambda}\beta_{\lambda_{\mathbb{C}}}\rangle=1,\qquad%\langle a_{\lambda}^{2},\lambda_{\mathbb{C}}\beta_{\lambda_{\mathbb{C}}}%\rangle=-1,\qquad\langle a_{\lambda}^{3},a_{\lambda}\beta_{\lambda_{\mathbb{C}%}}^{2}\rangle=3,⟨ italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = 1 , ⟨ italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = - 1 , ⟨ italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ = 3 ,

we deduce following 6.1.9 that the remaining classes are permanent cycles. Thus πλKOΣ3subscript𝜋absent𝜆𝐾subscript𝑂subscriptΣ3\pi_{\ast\lambda}KO_{\Sigma_{3}}italic_π start_POSTSUBSCRIPT ∗ italic_λ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT has the 4444-periodic pattern

,

where we now write σ𝜎\sigmaitalic_σ and λ𝜆\lambdaitalic_λ for classes that complexify to σsubscript𝜎\sigma_{\mathbb{C}}italic_σ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT and λsubscript𝜆\lambda_{\mathbb{C}}italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT. In particular, the identities

32m(1+σλ)=aλ4m+2λβλ2m+1,32m1(1+σλ)=aλ4mβλ2m3^{2m}(1+\sigma-\lambda)=a^{4m+2}_{\lambda}\cdot-\lambda\beta_{\lambda_{%\mathbb{C}}}^{2m+1},\qquad 3^{2m-1}(1+\sigma-\lambda)=a^{4m}_{\lambda}\cdot%\beta_{\lambda\mathbb{C}}^{2m}3 start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) = italic_a start_POSTSUPERSCRIPT 4 italic_m + 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ⋅ - italic_λ italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT , 3 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) = italic_a start_POSTSUPERSCRIPT 4 italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ⋅ italic_β start_POSTSUBSCRIPT italic_λ blackboard_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT

imply that C(aλm+1)𝐶superscriptsubscript𝑎𝜆𝑚1C(a_{\lambda}^{m+1})italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + 1 end_POSTSUPERSCRIPT ) admits a real t1+σλsubscript𝑡1𝜎𝜆t_{1+\sigma-\lambda}italic_t start_POSTSUBSCRIPT 1 + italic_σ - italic_λ end_POSTSUBSCRIPT-element of order 3m/2superscript3𝑚23^{\lfloor m/2\rfloor}3 start_POSTSUPERSCRIPT ⌊ italic_m / 2 ⌋ end_POSTSUPERSCRIPT. Moreover, the real t1+σλsubscript𝑡1𝜎𝜆t_{1+\sigma-\lambda}italic_t start_POSTSUBSCRIPT 1 + italic_σ - italic_λ end_POSTSUBSCRIPT-elements

t3n1(1+σλ)={J(βλn),keven,J(λβλn),kodd,π3n1(1+σλ)Σ3C(aλ2m)subscript𝑡superscript3𝑛11𝜎𝜆cases𝐽superscriptsubscript𝛽subscript𝜆𝑛𝑘even𝐽𝜆superscriptsubscript𝛽subscript𝜆𝑛𝑘oddsuperscriptsubscript𝜋superscript3𝑛11𝜎𝜆subscriptΣ3𝐶superscriptsubscript𝑎𝜆2𝑚t_{3^{n-1}(1+\sigma-\lambda)}=\begin{cases}J(\beta_{\lambda_{\mathbb{C}}}^{n})%,&k\text{ even},\\J(-\lambda\beta_{\lambda_{\mathbb{C}}}^{n}),&k\text{ odd},\end{cases}\quad\in%\quad\pi_{3^{n-1}(1+\sigma-\lambda)}^{\Sigma_{3}}C(a_{\lambda}^{2m})italic_t start_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) end_POSTSUBSCRIPT = { start_ROW start_CELL italic_J ( italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) , end_CELL start_CELL italic_k even , end_CELL end_ROW start_ROW start_CELL italic_J ( - italic_λ italic_β start_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) , end_CELL start_CELL italic_k odd , end_CELL end_ROW ∈ italic_π start_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT )

give rise to infinite periodic families

(t3n1(1+σλ)k)π3n1k(1+σλ)+2nλ1SΣ3superscriptsubscript𝑡superscript3𝑛11𝜎𝜆𝑘subscript𝜋superscript3𝑛1𝑘1𝜎𝜆2𝑛𝜆1subscript𝑆subscriptΣ3\partial(t_{3^{n-1}(1+\sigma-\lambda)}^{k})\in\pi_{3^{n-1}k(1+\sigma-\lambda)+%2n\lambda-1}S_{\Sigma_{3}}∂ ( italic_t start_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_k ( 1 + italic_σ - italic_λ ) + 2 italic_n italic_λ - 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT

with the property that

reseΣ3((t3n1(1+σλ)k))=kj4n1π4n1S.subscriptsuperscriptressubscriptΣ3𝑒superscriptsubscript𝑡superscript3𝑛11𝜎𝜆𝑘𝑘subscript𝑗4𝑛1subscript𝜋4𝑛1𝑆\operatorname{res}^{\Sigma_{3}}_{e}(\partial(t_{3^{n-1}(1+\sigma-\lambda)}^{k}%))=k\cdot j_{4n-1}\in\pi_{4n-1}S.roman_res start_POSTSUPERSCRIPT roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_t start_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ - italic_λ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ) = italic_k ⋅ italic_j start_POSTSUBSCRIPT 4 italic_n - 1 end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 4 italic_n - 1 end_POSTSUBSCRIPT italic_S .

6.4. The dihedral group of order 8888

We give a more delicate example with an orthogonal irreducible. Let D8subscript𝐷8D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT be the dihedral group of order 8888, generated by a rotation r𝑟ritalic_r and reflection f𝑓fitalic_f. We then have

RO(D8)={1,σr,σf,σrf,ρ},𝑅𝑂subscript𝐷81subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌RO(D_{8})=\mathbb{Z}\{1,\sigma_{r},\sigma_{f},\sigma_{rf},\rho\},italic_R italic_O ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT , italic_ρ } ,

where σgsubscript𝜎𝑔\sigma_{g}italic_σ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT is the character with kernel r2,gsuperscript𝑟2𝑔\langle r^{2},g\rangle⟨ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_g ⟩ and ρ𝜌\rhoitalic_ρ is the tautological 2222-dimensional representation. These satisfy the usual identity between characters together with

σgρ=ρ,ρ2=1+σr+σf+σrf.formulae-sequencesubscript𝜎𝑔𝜌𝜌superscript𝜌21subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓\sigma_{g}\cdot\rho=\rho,\qquad\rho^{2}=1+\sigma_{r}+\sigma_{f}+\sigma_{rf}.italic_σ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ⋅ italic_ρ = italic_ρ , italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT .

We begin by describing πρKUD8subscript𝜋absent𝜌𝐾subscript𝑈subscript𝐷8\pi_{\ast\rho}KU_{D_{8}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Complexification RO(D8)RU(D8)𝑅𝑂subscript𝐷8𝑅𝑈subscript𝐷8RO(D_{8})\rightarrow RU(D_{8})italic_R italic_O ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) → italic_R italic_U ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) is an isomorphism. We will use this to write RU(D8)={1,σr,σf,σrf,ρ}𝑅𝑈subscript𝐷81subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌RU(D_{8})=\mathbb{Z}\{1,\sigma_{r},\sigma_{f},\sigma_{rf},\rho\}italic_R italic_U ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT , italic_ρ }, only with the understanding that in the context of representation-grading these symbols refer only to their real counterparts. Write β2ρπ2ρKUD8=πρKUD8subscript𝛽2𝜌subscript𝜋2𝜌𝐾subscript𝑈subscript𝐷8subscript𝜋tensor-product𝜌𝐾subscript𝑈subscript𝐷8\beta_{2\rho}\in\pi_{2\rho}KU_{D_{8}}=\pi_{\mathbb{C}\otimes\rho}KU_{D_{8}}italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_π start_POSTSUBSCRIPT blackboard_C ⊗ italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT for the Bott class of the complex representation ρtensor-product𝜌\mathbb{C}\otimes\rhoblackboard_C ⊗ italic_ρ of real dimension 4444, and let eρ=aρ2β2ρRU(D8)subscript𝑒subscript𝜌superscriptsubscript𝑎𝜌2subscript𝛽2𝜌𝑅𝑈subscript𝐷8e_{\rho_{\mathbb{C}}}=a_{\rho}^{2}\beta_{2\rho}\in RU(D_{8})italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT ∈ italic_R italic_U ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ). As r𝑟ritalic_r acts by orientation-preserving automorphisms of ρ𝜌\rhoitalic_ρ but f𝑓fitalic_f and rf𝑟𝑓rfitalic_r italic_f do not, we find Λ2ρ=σrsuperscriptΛ2𝜌subscript𝜎𝑟\Lambda^{2}\rho=\sigma_{r}roman_Λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ = italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT, so that

eρ=1+σrρ.subscript𝑒subscript𝜌1subscript𝜎𝑟𝜌e_{\rho_{\mathbb{C}}}=1+\sigma_{r}-\rho.italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ρ .

This determines π2ρKUD8subscript𝜋2𝜌𝐾subscript𝑈subscript𝐷8\pi_{2\ast\rho}KU_{D_{8}}italic_π start_POSTSUBSCRIPT 2 ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. We next compute πρKUD8subscript𝜋𝜌𝐾subscript𝑈subscript𝐷8\pi_{\rho}KU_{D_{8}}italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. A computation shows

Ker(eρ)Kersubscript𝑒subscript𝜌\displaystyle\operatorname{Ker}(e_{\rho_{\mathbb{C}}})roman_Ker ( italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT )={1σr,σfσrf,1+σf+ρ},absent1subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓1subscript𝜎𝑓𝜌\displaystyle=\mathbb{Z}\{1-\sigma_{r},\sigma_{f}-\sigma_{rf},1+\sigma_{f}+%\rho\},= blackboard_Z { 1 - italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT , 1 + italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_ρ } ,
(eρ)subscript𝑒subscript𝜌\displaystyle(e_{\rho_{\mathbb{C}}})( italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT )={1+σrρ,σf+σrfρ}.absent1subscript𝜎𝑟𝜌subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌\displaystyle=\mathbb{Z}\{1+\sigma_{r}-\rho,\sigma_{f}+\sigma_{rf}-\rho\}.= blackboard_Z { 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ρ , italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT - italic_ρ } .

In the terminology of [Kar02], only the conjugacy classes of e𝑒eitalic_e, r𝑟ritalic_r, and r2superscript𝑟2r^{2}italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are oriented and even with respect to ρ𝜌\rhoitalic_ρ, and thus πρKUD8=3subscript𝜋𝜌𝐾subscript𝑈subscript𝐷8superscript3\pi_{\rho}KU_{D_{8}}=\mathbb{Z}^{3}italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = blackboard_Z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. As Ker(aρ:π2ρKUD8πρKUD8)Ker:subscript𝑎𝜌subscript𝜋2𝜌𝐾subscript𝑈subscript𝐷8subscript𝜋𝜌𝐾subscript𝑈subscript𝐷8\operatorname{Ker}(a_{\rho}\colon\pi_{2\rho}KU_{D_{8}}\rightarrow\pi_{\rho}KU_%{D_{8}})roman_Ker ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT : italic_π start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) has rank 3333 and Im(aρ2:π2ρKUD8π0KUD8)=(eρ)RU(D8)Im:superscriptsubscript𝑎𝜌2subscript𝜋2𝜌𝐾subscript𝑈subscript𝐷8subscript𝜋0𝐾subscript𝑈subscript𝐷8subscript𝑒subscript𝜌𝑅𝑈subscript𝐷8\operatorname{Im}(a_{\rho}^{2}\colon\pi_{2\rho}KU_{D_{8}}\rightarrow\pi_{0}KU_%{D_{8}})=(e_{\rho_{\mathbb{C}}})\subset RU(D_{8})roman_Im ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT : italic_π start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = ( italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ⊂ italic_R italic_U ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) is a split summand, the only possibility is that

πρKUD8={aρβ2ρ,aρσfβ2ρ,b}subscript𝜋𝜌𝐾subscript𝑈subscript𝐷8subscript𝑎𝜌subscript𝛽2𝜌subscript𝑎𝜌subscript𝜎𝑓subscript𝛽2𝜌𝑏\pi_{\rho}KU_{D_{8}}=\mathbb{Z}\{a_{\rho}\beta_{2\rho},a_{\rho}\sigma_{f}\beta%_{2\rho},b\}italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = blackboard_Z { italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT , italic_b }

for some b𝑏bitalic_b generating the kernel of aρsubscript𝑎𝜌a_{\rho}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT. This determines πρKUD8subscript𝜋absent𝜌𝐾subscript𝑈subscript𝐷8\pi_{\ast\rho}KU_{D_{8}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

We next descend to πρKOD8subscript𝜋absent𝜌𝐾subscript𝑂subscript𝐷8\pi_{\ast\rho}KO_{D_{8}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. As 4ρ=ρ4𝜌subscripttensor-product𝜌4\rho=\mathbb{H}\otimes_{\mathbb{R}}\rho4 italic_ρ = blackboard_H ⊗ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT italic_ρ is 8888-dimensional quaternionic, we reduce to considering 030\leq\ast\leq 30 ≤ ∗ ≤ 3. As

resrD8(ρ)=L+L1,resfD8(ρ)=1+σ=resrfD8(ρ),formulae-sequencesubscriptsuperscriptressubscript𝐷8delimited-⟨⟩𝑟𝜌𝐿superscript𝐿1subscriptsuperscriptressubscript𝐷8delimited-⟨⟩𝑓𝜌1𝜎subscriptsuperscriptressubscript𝐷8delimited-⟨⟩𝑟𝑓𝜌\operatorname{res}^{D_{8}}_{\langle r\rangle}(\rho)=L+L^{-1},\quad%\operatorname{res}^{D_{8}}_{\langle f\rangle}(\rho)=1+\sigma=\operatorname{res%}^{D_{8}}_{\langle rf\rangle}(\rho),roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟨ italic_r ⟩ end_POSTSUBSCRIPT ( italic_ρ ) = italic_L + italic_L start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟨ italic_f ⟩ end_POSTSUBSCRIPT ( italic_ρ ) = 1 + italic_σ = roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟨ italic_r italic_f ⟩ end_POSTSUBSCRIPT ( italic_ρ ) ,

we must have

ψ1(β2ρ)=σrβ2ρ.superscript𝜓1subscript𝛽2𝜌subscript𝜎𝑟subscript𝛽2𝜌\psi^{-1}(\beta_{2\rho})=\sigma_{r}\beta_{2\rho}.italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT ) = italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT .

As b𝑏bitalic_b must lift a multiple of β𝛽\betaitalic_β and generates the kernel of aρsubscript𝑎𝜌a_{\rho}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT we also have ψ1(b)=bsuperscript𝜓1𝑏𝑏\psi^{-1}(b)=-bitalic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_b ) = - italic_b. Thus

H0(C2;πmρKUD8)={{1,σr,σf,σrf,ρ},m=0,{aρ,aρσf}β2ρ,m=1,{(1+σr),(σf+σrf),ρ}β2ρ,m=2,{aρ,aρσf}β2ρ2,m=3.superscript𝐻0subscript𝐶2subscript𝜋𝑚𝜌𝐾subscript𝑈subscript𝐷8cases1subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌𝑚0subscript𝑎𝜌subscript𝑎𝜌subscript𝜎𝑓subscript𝛽2𝜌𝑚11subscript𝜎𝑟subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌subscript𝛽2𝜌𝑚2subscript𝑎𝜌subscript𝑎𝜌subscript𝜎𝑓superscriptsubscript𝛽2𝜌2𝑚3H^{0}(C_{2};\pi_{m\rho}KU_{D_{8}})=\begin{cases}\mathbb{Z}\{1,\sigma_{r},%\sigma_{f},\sigma_{rf},\rho\},&m=0,\\\mathbb{Z}\{a_{\rho},a_{\rho}\sigma_{f}\}\beta_{2\rho},&m=1,\\\mathbb{Z}\{(1+\sigma_{r}),(\sigma_{f}+\sigma_{rf}),\rho\}\beta_{2\rho},&m=2,%\\\mathbb{Z}\{a_{\rho},a_{\rho}\sigma_{f}\}\beta_{2\rho}^{2},&m=3.\end{cases}italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT italic_m italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = { start_ROW start_CELL blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT , italic_ρ } , end_CELL start_CELL italic_m = 0 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT } italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT , end_CELL start_CELL italic_m = 1 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { ( 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) , ( italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT ) , italic_ρ } italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT , end_CELL start_CELL italic_m = 2 , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT } italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL start_CELL italic_m = 3 . end_CELL end_ROW

We claim that all of these are permanent cycles. For m=0𝑚0m=0italic_m = 0 this holds as RO(D8)RU(D8)𝑅𝑂subscript𝐷8𝑅𝑈subscript𝐷8RO(D_{8})\cong RU(D_{8})italic_R italic_O ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) ≅ italic_R italic_U ( italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ), and using aρsubscript𝑎𝜌a_{\rho}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT this implies it for m=1𝑚1m=1italic_m = 1. Necessarily (1+σr)β2ρ1subscript𝜎𝑟subscript𝛽2𝜌(1+\sigma_{r})\beta_{2\rho}( 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT and (σf+σrf)β2ρsubscript𝜎𝑓subscript𝜎𝑟𝑓subscript𝛽2𝜌(\sigma_{f}+\sigma_{rf})\beta_{2\rho}( italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT are permanent cycles as they annihilate η𝜂\etaitalic_η, and aρβ2ρ2subscript𝑎𝜌superscriptsubscript𝛽2𝜌2a_{\rho}\beta_{2\rho}^{2}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and aρσfβ2ρ2subscript𝑎𝜌subscript𝜎𝑓superscriptsubscript𝛽2𝜌2a_{\rho}\sigma_{f}\beta_{2\rho}^{2}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are permanent cycles because the same is true of each of aρsubscript𝑎𝜌a_{\rho}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT, β2ρ2superscriptsubscript𝛽2𝜌2\beta_{2\rho}^{2}italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and σfsubscript𝜎𝑓\sigma_{f}italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT. Finally, as aρρβ2ρ=aρ(1+σf)β2ρsubscript𝑎𝜌𝜌subscript𝛽2𝜌subscript𝑎𝜌1subscript𝜎𝑓subscript𝛽2𝜌a_{\rho}\cdot\rho\beta_{2\rho}=a_{\rho}(1+\sigma_{f})\beta_{2\rho}italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ⋅ italic_ρ italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT, we find that aρ:H3(C2;π2ρ+2KUD8)H3(C2;πρ+2KUD8):subscript𝑎𝜌superscript𝐻3subscript𝐶2subscript𝜋2𝜌2𝐾subscript𝑈subscript𝐷8superscript𝐻3subscript𝐶2subscript𝜋𝜌2𝐾subscript𝑈subscript𝐷8a_{\rho}\colon H^{3}(C_{2};\pi_{2\rho+2}KU_{D_{8}})\rightarrow H^{3}(C_{2};\pi%_{\rho+2}KU_{D_{8}})italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT : italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT 2 italic_ρ + 2 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) → italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT italic_ρ + 2 end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) is an injection, forcing ρβ2ρ𝜌subscript𝛽2𝜌\rho\beta_{2\rho}italic_ρ italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT to be a permanent cycle. In the end we find that πρKOD8subscript𝜋absent𝜌𝐾subscript𝑂subscript𝐷8\pi_{\ast\rho}KO_{D_{8}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT (modulo possible torsion classes) has the 4444-periodic pattern

.

Let α=1+σrρ𝛼1subscript𝜎𝑟𝜌\alpha=1+\sigma_{r}-\rhoitalic_α = 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ρ. Then the identities

24m1αsuperscript24𝑚1𝛼\displaystyle 2^{4m-1}\alpha2 start_POSTSUPERSCRIPT 4 italic_m - 1 end_POSTSUPERSCRIPT italic_α=aρ4m((1+22m1)+(122m1)σf)β2ρ2mabsentsuperscriptsubscript𝑎𝜌4𝑚1superscript22𝑚11superscript22𝑚1subscript𝜎𝑓superscriptsubscript𝛽2𝜌2𝑚\displaystyle=a_{\rho}^{4m}((1+2^{2m-1})+(1-2^{2m-1})\sigma_{f})\beta_{2\rho}^%{2m}= italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 italic_m end_POSTSUPERSCRIPT ( ( 1 + 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ) + ( 1 - 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ) italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT
24m+1αsuperscript24𝑚1𝛼\displaystyle 2^{4m+1}\alpha2 start_POSTSUPERSCRIPT 4 italic_m + 1 end_POSTSUPERSCRIPT italic_α=aρ4m+2(22m1(1+σr)22m1(σf+σrf)ρ)β2ρ2m+1absentsuperscriptsubscript𝑎𝜌4𝑚2superscript22𝑚11subscript𝜎𝑟superscript22𝑚1subscript𝜎𝑓subscript𝜎𝑟𝑓𝜌superscriptsubscript𝛽2𝜌2𝑚1\displaystyle=a_{\rho}^{4m+2}(2^{2m-1}(1+\sigma_{r})-2^{2m-1}(\sigma_{f}+%\sigma_{rf})-\rho)\beta_{2\rho}^{2m+1}= italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 italic_m + 2 end_POSTSUPERSCRIPT ( 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) - 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT italic_r italic_f end_POSTSUBSCRIPT ) - italic_ρ ) italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT

for m>0𝑚0m>0italic_m > 0 produce tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-elements

t22n1απ22n1αD8C(aρ2n)subscript𝑡superscript22𝑛1𝛼superscriptsubscript𝜋superscript22𝑛1𝛼subscript𝐷8𝐶superscriptsubscript𝑎𝜌2𝑛t_{2^{2n-1}\alpha}\in\pi_{2^{2n-1}\alpha}^{D_{8}}C(a_{\rho}^{2n})italic_t start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT italic_α end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT )

satisfying

reseD8((t22n1α))={2j4n1,n0(mod2),j4n1,n1(mod2).subscriptsuperscriptressubscript𝐷8𝑒subscript𝑡superscript22𝑛1𝛼cases2subscript𝑗4𝑛1𝑛annotated0pmod2subscript𝑗4𝑛1𝑛annotated1pmod2\operatorname{res}^{D_{8}}_{e}(\partial(t_{2^{2n-1}\alpha}))=\begin{cases}2j_{%4n-1},&n\equiv 0\pmod{2},\\j_{4n-1},&n\equiv 1\pmod{2}.\end{cases}roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_t start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT italic_α end_POSTSUBSCRIPT ) ) = { start_ROW start_CELL 2 italic_j start_POSTSUBSCRIPT 4 italic_n - 1 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n ≡ 0 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER , end_CELL end_ROW start_ROW start_CELL italic_j start_POSTSUBSCRIPT 4 italic_n - 1 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n ≡ 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER . end_CELL end_ROW

Likewise, because

resr2D8(aρβ2ρ)=(aσβ2σ)2=ηC22,subscriptsuperscriptressubscript𝐷8delimited-⟨⟩superscript𝑟2subscript𝑎𝜌subscript𝛽2𝜌superscriptsubscript𝑎𝜎subscript𝛽2𝜎2superscriptsubscript𝜂subscript𝐶22\operatorname{res}^{D_{8}}_{\langle r^{2}\rangle}(a_{\rho}\beta_{2\rho})=(a_{%\sigma}\beta_{2\sigma})^{2}=\eta_{C_{2}}^{2},roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟨ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT ) = ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_η start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

the element

tα=J(aρβ2ρ)παD8C(aρ)subscript𝑡𝛼𝐽subscript𝑎𝜌subscript𝛽2𝜌superscriptsubscript𝜋𝛼subscript𝐷8𝐶subscript𝑎𝜌t_{\alpha}=J(a_{\rho}\beta_{2\rho})\in\pi_{\alpha}^{D_{8}}C(a_{\rho})italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_J ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT 2 italic_ρ end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT )

satisfies

resr2D8(tα)=u2σπ2(1σ)C2C(aσ2).subscriptsuperscriptressubscript𝐷8delimited-⟨⟩superscript𝑟2subscript𝑡𝛼subscript𝑢2𝜎superscriptsubscript𝜋21𝜎subscript𝐶2𝐶superscriptsubscript𝑎𝜎2\operatorname{res}^{D_{8}}_{\langle r^{2}\rangle}(t_{\alpha})=u_{2\sigma}\in%\pi_{2(1-\sigma)}^{C_{2}}C(a_{\sigma}^{2}).roman_res start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟨ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_u start_POSTSUBSCRIPT 2 italic_σ end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 ( 1 - italic_σ ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

6.5. Example: the nonabelian group of order 21212121

We give an example with a complex irreducible. Let G=C7C3=x,y:x7=e=y3,xy=yx2G=C_{7}\rtimes C_{3}=\langle x,y:x^{7}=e=y^{3},xy=yx^{2}\rangleitalic_G = italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ⟨ italic_x , italic_y : italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT = italic_e = italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_x italic_y = italic_y italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ be the nonabelian group of order 21212121. Consulting [Dok] we see that this group has the five conjugacy classes

C(e)={e},C(x)={x,x2,x4},C(x3)={x3,x5,x6},formulae-sequence𝐶𝑒𝑒formulae-sequence𝐶𝑥𝑥superscript𝑥2superscript𝑥4𝐶superscript𝑥3superscript𝑥3superscript𝑥5superscript𝑥6\displaystyle C(e)=\{e\},\qquad C(x)=\{x,x^{2},x^{4}\},\qquad C(x^{3})=\{x^{3}%,x^{5},x^{6}\},italic_C ( italic_e ) = { italic_e } , italic_C ( italic_x ) = { italic_x , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT } , italic_C ( italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) = { italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT } ,
C(y)={y,yx,,yx6},C(y2)={y2,y2x,,y2x6},formulae-sequence𝐶𝑦𝑦𝑦𝑥𝑦superscript𝑥6𝐶superscript𝑦2superscript𝑦2superscript𝑦2𝑥superscript𝑦2superscript𝑥6\displaystyle C(y)=\{y,yx,\ldots,yx^{6}\},\qquad C(y^{2})=\{y^{2},y^{2}x,%\ldots,y^{2}x^{6}\},italic_C ( italic_y ) = { italic_y , italic_y italic_x , … , italic_y italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT } , italic_C ( italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = { italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x , … , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT } ,

and character table

C(e)C(x)C(x3)C(y)C(y2)111111ω111ζ32ζ3ω¯111ζ3ζ32ρ3ζ73+ζ76+ζ75ζ7+ζ72+ζ7400ρ¯3ζ7+ζ72+ζ74ζ73+ζ76+ζ7500.missing-subexpression𝐶𝑒𝐶𝑥𝐶superscript𝑥3𝐶𝑦𝐶superscript𝑦2missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression111111𝜔111superscriptsubscript𝜁32subscript𝜁3¯𝜔111subscript𝜁3superscriptsubscript𝜁32𝜌3superscriptsubscript𝜁73superscriptsubscript𝜁76superscriptsubscript𝜁75subscript𝜁7superscriptsubscript𝜁72superscriptsubscript𝜁7400¯𝜌3subscript𝜁7superscriptsubscript𝜁72superscriptsubscript𝜁74superscriptsubscript𝜁73superscriptsubscript𝜁76superscriptsubscript𝜁7500\begin{array}[]{c|ccccc}&C(e)&C(x)&C(x^{3})&C(y)&C(y^{2})\\\hline\cr 1&1&1&1&1&1\\\omega&1&1&1&\zeta_{3}^{2}&\zeta_{3}\\\overline{\omega}&1&1&1&\zeta_{3}&\zeta_{3}^{2}\\\rho&3&\zeta_{7}^{3}+\zeta_{7}^{6}+\zeta_{7}^{5}&\zeta_{7}+\zeta_{7}^{2}+\zeta%_{7}^{4}&0&0\\\overline{\rho}&3&\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}&\zeta_{7}^{3}+\zeta_{7%}^{6}+\zeta_{7}^{5}&0&0\\\end{array}.start_ARRAY start_ROW start_CELL end_CELL start_CELL italic_C ( italic_e ) end_CELL start_CELL italic_C ( italic_x ) end_CELL start_CELL italic_C ( italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) end_CELL start_CELL italic_C ( italic_y ) end_CELL start_CELL italic_C ( italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL italic_ω end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL over¯ start_ARG italic_ω end_ARG end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ρ end_CELL start_CELL 3 end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL over¯ start_ARG italic_ρ end_ARG end_CELL start_CELL 3 end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY .

Write ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for the underlying real representations of ω𝜔\omegaitalic_ω and ρ𝜌\rhoitalic_ρ. We describe πρ0KOC7C3subscript𝜋absentsubscript𝜌0𝐾subscript𝑂right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3\pi_{\ast\rho_{0}}KO_{C_{7}\rtimes C_{3}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Observe

ωρ=ρ=ω¯ρ,ρ2=ρ+2ρ¯,ρρ¯=1+ω+ω¯+ρ+ρ¯.formulae-sequence𝜔𝜌𝜌¯𝜔𝜌formulae-sequencesuperscript𝜌2𝜌2¯𝜌𝜌¯𝜌1𝜔¯𝜔𝜌¯𝜌\omega\rho=\rho=\overline{\omega}\rho,\qquad\rho^{2}=\rho+2\overline{\rho},%\qquad\rho\overline{\rho}=1+\omega+\overline{\omega}+\rho+\overline{\rho}.italic_ω italic_ρ = italic_ρ = over¯ start_ARG italic_ω end_ARG italic_ρ , italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_ρ + 2 over¯ start_ARG italic_ρ end_ARG , italic_ρ over¯ start_ARG italic_ρ end_ARG = 1 + italic_ω + over¯ start_ARG italic_ω end_ARG + italic_ρ + over¯ start_ARG italic_ρ end_ARG .

Using the general character identity

χΛ2U(g)=χU(g)2χU(g2)2,subscript𝜒superscriptΛ2𝑈𝑔subscript𝜒𝑈superscript𝑔2subscript𝜒𝑈superscript𝑔22\chi_{\Lambda^{2}U}(g)=\frac{\chi_{U}(g)^{2}-\chi_{U}(g^{2})}{2},italic_χ start_POSTSUBSCRIPT roman_Λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_U end_POSTSUBSCRIPT ( italic_g ) = divide start_ARG italic_χ start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT ( italic_g ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_χ start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT ( italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG 2 end_ARG ,

we compute Λ2ρ=ρ¯superscriptΛ2𝜌¯𝜌\Lambda^{2}\rho=\overline{\rho}roman_Λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ = over¯ start_ARG italic_ρ end_ARG and thuseρ=ρ¯ρsubscript𝑒𝜌¯𝜌𝜌e_{\rho}=\overline{\rho}-\rhoitalic_e start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT = over¯ start_ARG italic_ρ end_ARG - italic_ρThis determines πρKUC7C3subscript𝜋absent𝜌𝐾subscript𝑈right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3\pi_{\ast\rho}KU_{C_{7}\rtimes C_{3}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Restriction gives an injection πρKUC7C3πL3+L5+L6KUC7×πL0+L1+L2KUC3subscript𝜋𝜌𝐾subscript𝑈right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3subscript𝜋superscript𝐿3superscript𝐿5superscript𝐿6𝐾subscript𝑈subscript𝐶7subscript𝜋superscript𝐿0superscript𝐿1superscript𝐿2𝐾subscript𝑈subscript𝐶3\pi_{\rho}KU_{C_{7}\rtimes C_{3}}\rightarrow\pi_{L^{3}+L^{5}+L^{6}}KU_{C_{7}}%\times\pi_{L^{0}+L^{1}+L^{2}}KU_{C_{3}}italic_π start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_π start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_π start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Using this we compute ψ1(βρ)=βρsuperscript𝜓1subscript𝛽𝜌subscript𝛽𝜌\psi^{-1}(\beta_{\rho})=-\beta_{\rho}italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) = - italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT. The same calculations works swapping ρ𝜌\rhoitalic_ρ and ρ¯¯𝜌\overline{\rho}over¯ start_ARG italic_ρ end_ARG, and so we find

H0(C2;πm1ρ+m2ρ¯KUC7C3)={{1,ω+ω¯,ρ+ρ¯}βρm1βρ¯m2,m1+m2even,{ωω¯,ρρ¯}βρm1βρ¯m2,m1+m2odd.superscript𝐻0subscript𝐶2subscript𝜋subscript𝑚1𝜌subscript𝑚2¯𝜌𝐾subscript𝑈right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3cases1𝜔¯𝜔𝜌¯𝜌superscriptsubscript𝛽𝜌subscript𝑚1superscriptsubscript𝛽¯𝜌subscript𝑚2subscript𝑚1subscript𝑚2even𝜔¯𝜔𝜌¯𝜌superscriptsubscript𝛽𝜌subscript𝑚1superscriptsubscript𝛽¯𝜌subscript𝑚2subscript𝑚1subscript𝑚2oddH^{0}(C_{2};\pi_{m_{1}\rho+m_{2}\overline{\rho}}KU_{C_{7}\rtimes C_{3}})=%\begin{cases}\mathbb{Z}\{1,\omega+\overline{\omega},\rho+\overline{\rho}\}%\beta_{\rho}^{m_{1}}\beta_{\overline{\rho}}^{m_{2}},&m_{1}+m_{2}\text{ even},%\\\mathbb{Z}\{\omega-\overline{\omega},\rho-\overline{\rho}\}\beta_{\rho}^{m_{1}%}\beta_{\overline{\rho}}^{m_{2}},&m_{1}+m_{2}\text{ odd}.\end{cases}italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ρ + italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = { start_ROW start_CELL blackboard_Z { 1 , italic_ω + over¯ start_ARG italic_ω end_ARG , italic_ρ + over¯ start_ARG italic_ρ end_ARG } italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT even , end_CELL end_ROW start_ROW start_CELL blackboard_Z { italic_ω - over¯ start_ARG italic_ω end_ARG , italic_ρ - over¯ start_ARG italic_ρ end_ARG } italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT odd . end_CELL end_ROW

As ρ=ρ+ρ¯subscripttensor-product𝜌𝜌¯𝜌\mathbb{H}\otimes_{\mathbb{C}}\rho=\rho+\overline{\rho}blackboard_H ⊗ start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT italic_ρ = italic_ρ + over¯ start_ARG italic_ρ end_ARG is 12121212-dimensional quaternionic, βρ2βρ¯2superscriptsubscript𝛽𝜌2superscriptsubscript𝛽¯𝜌2\beta_{\rho}^{2}\beta_{\overline{\rho}}^{2}italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is a permanent cycle but βρβρ¯subscript𝛽𝜌subscript𝛽¯𝜌\beta_{\rho}\beta_{\overline{\rho}}italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT is not. Thus we can compute πρ0KOC7C3subscript𝜋absentsubscript𝜌0𝐾subscript𝑂right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3\pi_{\ast\rho_{0}}KO_{C_{7}\rtimes C_{3}}italic_π start_POSTSUBSCRIPT ∗ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, with a convenient choice of complex structure on multiples of ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, as having the form

.

In writing RO(C7C3)={1,ω+ω¯,ρ+ρ¯}RU(C7C3)𝑅𝑂right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶31𝜔¯𝜔𝜌¯𝜌𝑅𝑈right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3RO(C_{7}\rtimes C_{3})=\mathbb{Z}\{1,\omega+\overline{\omega},\rho+\overline{%\rho}\}\subset RU(C_{7}\rtimes C_{3})italic_R italic_O ( italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_ω + over¯ start_ARG italic_ω end_ARG , italic_ρ + over¯ start_ARG italic_ρ end_ARG } ⊂ italic_R italic_U ( italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ), the symbols ω+ω¯𝜔¯𝜔\omega+\overline{\omega}italic_ω + over¯ start_ARG italic_ω end_ARG and ρ+ρ¯𝜌¯𝜌\rho+\overline{\rho}italic_ρ + over¯ start_ARG italic_ρ end_ARG represent the real representations ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT underlying ω𝜔\omegaitalic_ω and ρ𝜌\rhoitalic_ρ. For example, the identity (ρ¯ρ)ρ¯=ρ(1+ω+ω¯)¯𝜌𝜌¯𝜌𝜌1𝜔¯𝜔(\overline{\rho}-\rho)\cdot\overline{\rho}=\rho-(1+\omega+\overline{\omega})( over¯ start_ARG italic_ρ end_ARG - italic_ρ ) ⋅ over¯ start_ARG italic_ρ end_ARG = italic_ρ - ( 1 + italic_ω + over¯ start_ARG italic_ω end_ARG ) in RU(C7C3)𝑅𝑈right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3RU(C_{7}\rtimes C_{3})italic_R italic_U ( italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) gives a complex tρ(+ω+ω¯)subscript𝑡𝜌𝜔¯𝜔t_{\rho-(\mathbb{C}+\omega+\overline{\omega})}italic_t start_POSTSUBSCRIPT italic_ρ - ( blackboard_C + italic_ω + over¯ start_ARG italic_ω end_ARG ) end_POSTSUBSCRIPT-element J(ρ¯βρ)πρ(+ω+ω¯)C7C3C(aρ)𝐽¯𝜌subscript𝛽𝜌superscriptsubscript𝜋𝜌𝜔¯𝜔right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3𝐶subscript𝑎𝜌J(\overline{\rho}\beta_{\rho})\in\pi_{\rho-(\mathbb{C}+\omega+\overline{\omega%})}^{C_{7}\rtimes C_{3}}C(a_{\rho})italic_J ( over¯ start_ARG italic_ρ end_ARG italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ) ∈ italic_π start_POSTSUBSCRIPT italic_ρ - ( blackboard_C + italic_ω + over¯ start_ARG italic_ω end_ARG ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ), with underlying real tρ0(2+2ω0)subscript𝑡subscript𝜌022subscript𝜔0t_{\rho_{0}-(2+2\omega_{0})}italic_t start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - ( 2 + 2 italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT-element in πρ0(2+2ω0)C7C3C(aρ0)superscriptsubscript𝜋subscript𝜌022subscript𝜔0right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3𝐶subscript𝑎subscript𝜌0\pi_{\rho_{0}-(2+2\omega_{0})}^{C_{7}\rtimes C_{3}}C(a_{\rho_{0}})italic_π start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - ( 2 + 2 italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ). The identity aρaρ¯(ρ+ρ¯)βρβρ¯=(ρ+ρ¯)(2+2(ω+ω¯))subscript𝑎𝜌subscript𝑎¯𝜌𝜌¯𝜌subscript𝛽𝜌subscript𝛽¯𝜌𝜌¯𝜌22𝜔¯𝜔a_{\rho}a_{\overline{\rho}}(\rho+\overline{\rho})\beta_{\rho}\beta_{\overline{%\rho}}=(\rho+\overline{\rho})-(2+2(\omega+\overline{\omega}))italic_a start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT ( italic_ρ + over¯ start_ARG italic_ρ end_ARG ) italic_β start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT over¯ start_ARG italic_ρ end_ARG end_POSTSUBSCRIPT = ( italic_ρ + over¯ start_ARG italic_ρ end_ARG ) - ( 2 + 2 ( italic_ω + over¯ start_ARG italic_ω end_ARG ) ) then implies that this in fact lifts to tπρ0(2+2ω0)C7C3C(aρ02)𝑡superscriptsubscript𝜋subscript𝜌022subscript𝜔0right-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3𝐶superscriptsubscript𝑎subscript𝜌02t\in\pi_{\rho_{0}-(2+2\omega_{0})}^{C_{7}\rtimes C_{3}}C(a_{\rho_{0}}^{2})italic_t ∈ italic_π start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - ( 2 + 2 italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) satisfying reseC7C3((t))=3j11subscriptsuperscriptresright-normal-factor-semidirect-productsubscript𝐶7subscript𝐶3𝑒𝑡3subscript𝑗11\operatorname{res}^{C_{7}\rtimes C_{3}}_{e}(\partial(t))=3j_{11}roman_res start_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ⋊ italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_t ) ) = 3 italic_j start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT.

6.6. Example: the quaternion group of order 8888

We give an example with a symplectic irreducible. See also [Fuj74, Mah75]. Let G=Q8𝐺subscript𝑄8G=Q_{8}italic_G = italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT be the quaternion group of order 8888. This sits in a short exact sequence

1C2Q8C2×C21,1subscript𝐶2subscript𝑄8subscript𝐶2subscript𝐶211\rightarrow C_{2}\rightarrow Q_{8}\rightarrow C_{2}\times C_{2}\rightarrow 1,1 → italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT → italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → 1 ,

and we have

RU(Q8)={1,σ1,σ2,σ3,H},𝑅𝑈subscript𝑄81subscript𝜎1subscript𝜎2subscript𝜎3𝐻RU(Q_{8})=\mathbb{Z}\{1,\sigma_{1},\sigma_{2},\sigma_{3},H\},italic_R italic_U ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_H } ,

with {1,σ1,σ2,σ3}RO(C2)1subscript𝜎1subscript𝜎2subscript𝜎3𝑅𝑂subscript𝐶2\mathbb{Z}\{1,\sigma_{1},\sigma_{2},\sigma_{3}\}\cong RO(C_{2})blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT } ≅ italic_R italic_O ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) consisting of those representations lifted from C2×C2subscript𝐶2subscript𝐶2C_{2}\times C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and H𝐻Hitalic_H the tautological representation of Q8Sp(1)SU(2)subscript𝑄8𝑆𝑝1𝑆𝑈2Q_{8}\subset Sp(1)\cong SU(2)italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ⊂ italic_S italic_p ( 1 ) ≅ italic_S italic_U ( 2 ). Write \mathbb{H}blackboard_H for the underlying 4444-dimensional real representation of H𝐻Hitalic_H. As Q8subscript𝑄8Q_{8}italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT acts freely on S()𝑆S(\mathbb{H})italic_S ( blackboard_H ), the Q8subscript𝑄8Q_{8}italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-spectra C(am)𝐶superscriptsubscript𝑎𝑚C(a_{\mathbb{H}}^{m})italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) admit all possible periodicities. Observe

σiH=H,H2=1+σ1+σ2+σ3,eH=2H.formulae-sequencesubscript𝜎𝑖𝐻𝐻formulae-sequencesuperscript𝐻21subscript𝜎1subscript𝜎2subscript𝜎3subscript𝑒𝐻2𝐻\sigma_{i}H=H,\qquad H^{2}=1+\sigma_{1}+\sigma_{2}+\sigma_{3},\qquad e_{H}=2-H.italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_H = italic_H , italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 2 - italic_H .

This determines πKUQ8subscript𝜋absent𝐾subscript𝑈subscript𝑄8\pi_{\ast\mathbb{H}}KU_{Q_{8}}italic_π start_POSTSUBSCRIPT ∗ blackboard_H end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Complex conjugation acts trivially, so the E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-page of the HFPSS for π+KOQ8subscript𝜋absent𝐾subscript𝑂subscript𝑄8\pi_{\ast+\ast\mathbb{H}}KO_{Q_{8}}italic_π start_POSTSUBSCRIPT ∗ + ∗ blackboard_H end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is given by

H(C2;π+KUQ8)πHKUQ8[β±2,η]/(2η).superscript𝐻subscript𝐶2subscript𝜋absent𝐾subscript𝑈subscript𝑄8tensor-productsubscript𝜋absent𝐻𝐾subscript𝑈subscript𝑄8superscript𝛽plus-or-minus2𝜂2𝜂H^{\ast}(C_{2};\pi_{\ast+\ast\mathbb{H}}KU_{Q_{8}})\cong\pi_{\ast H}KU_{Q_{8}}%\otimes\mathbb{Z}[\beta^{\pm 2},\eta]/(2\eta).italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ + ∗ blackboard_H end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ≅ italic_π start_POSTSUBSCRIPT ∗ italic_H end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊗ blackboard_Z [ italic_β start_POSTSUPERSCRIPT ± 2 end_POSTSUPERSCRIPT , italic_η ] / ( 2 italic_η ) .

As H𝐻Hitalic_H is symplectic and the σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are orthogonal we have

RO(Q8)={1,σ1,σ2,σ3,2H}RU(Q8),𝑅𝑂subscript𝑄81subscript𝜎1subscript𝜎2subscript𝜎32𝐻𝑅𝑈subscript𝑄8RO(Q_{8})=\mathbb{Z}\{1,\sigma_{1},\sigma_{2},\sigma_{3},2H\}\subset RU(Q_{8}),italic_R italic_O ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) = blackboard_Z { 1 , italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , 2 italic_H } ⊂ italic_R italic_U ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) ,

where “2H2𝐻2H2 italic_H” represents the real represenation \mathbb{H}blackboard_H. This manifests in the HFPSS as a nontrivial differential d3(H)=Hβ2η3subscript𝑑3𝐻𝐻superscript𝛽2superscript𝜂3d_{3}(H)=H\beta^{-2}\eta^{3}italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_H ) = italic_H italic_β start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. As \mathbb{H}blackboard_H is quaternionic of real dimension 4444, the class βH2π2KUQ8superscriptsubscript𝛽𝐻2subscript𝜋2𝐾subscript𝑈subscript𝑄8\beta_{H}^{2}\in\pi_{2\mathbb{H}}KU_{Q_{8}}italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 blackboard_H end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a permanent cycle but βHπKUQ8subscript𝛽𝐻subscript𝜋𝐾subscript𝑈subscript𝑄8\beta_{H}\in\pi_{\mathbb{H}}KU_{Q_{8}}italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT italic_K italic_U start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is not, and so πKOQ8subscript𝜋absent𝐾subscript𝑂subscript𝑄8\pi_{\ast\mathbb{H}}KO_{Q_{8}}italic_π start_POSTSUBSCRIPT ∗ blackboard_H end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT has the 2222-periodic pattern

.

A calculation reveals that

24m1(4)superscript24𝑚14\displaystyle 2^{4m-1}(4-\mathbb{H})2 start_POSTSUPERSCRIPT 4 italic_m - 1 end_POSTSUPERSCRIPT ( 4 - blackboard_H )=a2m(22m+122m1(1+σ1+σ2+σ3)2H)βH2m,absentsuperscriptsubscript𝑎2𝑚superscript22𝑚1superscript22𝑚11subscript𝜎1subscript𝜎2subscript𝜎32𝐻superscriptsubscript𝛽𝐻2𝑚\displaystyle=a_{\mathbb{H}}^{2m}(2^{2m+1}-2^{2m-1}(1+\sigma_{1}+\sigma_{2}+%\sigma_{3})-2H)\beta_{H}^{2m},= italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT ( 2 start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT - 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) - 2 italic_H ) italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT ,
24m(4)superscript24𝑚4\displaystyle 2^{4m}(4-\mathbb{H})2 start_POSTSUPERSCRIPT 4 italic_m end_POSTSUPERSCRIPT ( 4 - blackboard_H )=a2m+1(22m+122m1(1+σ1+σ2+σ3)H)βH2m+1absentsuperscriptsubscript𝑎2𝑚1superscript22𝑚1superscript22𝑚11subscript𝜎1subscript𝜎2subscript𝜎3𝐻superscriptsubscript𝛽𝐻2𝑚1\displaystyle=a_{\mathbb{H}}^{2m+1}(2^{2m+1}-2^{2m-1}(1+\sigma_{1}+\sigma_{2}+%\sigma_{3})-H)\beta_{H}^{2m+1}= italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT ( 2 start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT - 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) - italic_H ) italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT

for m>0𝑚0m>0italic_m > 0: for example, the identities

(2H)(1σi)2𝐻1subscript𝜎𝑖\displaystyle(2-H)\cdot(1-\sigma_{i})( 2 - italic_H ) ⋅ ( 1 - italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )=2(1σi),absent21subscript𝜎𝑖\displaystyle=2(1-\sigma_{i}),= 2 ( 1 - italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ,
(2H)(1+σ1+σ2+σ32H)2𝐻1subscript𝜎1subscript𝜎2subscript𝜎32𝐻\displaystyle(2-H)\cdot(1+\sigma_{1}+\sigma_{2}+\sigma_{3}-2H)( 2 - italic_H ) ⋅ ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 2 italic_H )=8(1+σ1+σ2+σ32H),absent81subscript𝜎1subscript𝜎2subscript𝜎32𝐻\displaystyle=8(1+\sigma_{1}+\sigma_{2}+\sigma_{3}-2H),= 8 ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 2 italic_H ) ,
(2H)(H)2𝐻𝐻\displaystyle(2-H)\cdot(-H)( 2 - italic_H ) ⋅ ( - italic_H )=1+σ1+σ2+σ32Habsent1subscript𝜎1subscript𝜎2subscript𝜎32𝐻\displaystyle=\hphantom{8(}1+\sigma_{1}+\sigma_{2}+\sigma_{3}-2H= 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 2 italic_H

together imply

a2m(22m+122m1(1+σ1+σ2+σ3))βH2msuperscriptsubscript𝑎2𝑚superscript22𝑚1superscript22𝑚11subscript𝜎1subscript𝜎2subscript𝜎3superscriptsubscript𝛽𝐻2𝑚\displaystyle a_{\mathbb{H}}^{2m}\cdot(2^{2m+1}-2^{2m-1}(1+\sigma_{1}+\sigma_{%2}+\sigma_{3}))\beta_{H}^{2m}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT ⋅ ( 2 start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT - 2 start_POSTSUPERSCRIPT 2 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ) italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT=24m1(4(1+σ1+σ2+σ3)),absentsuperscript24𝑚141subscript𝜎1subscript𝜎2subscript𝜎3\displaystyle=2^{4m-1}(4-(1+\sigma_{1}+\sigma_{2}+\sigma_{3})),= 2 start_POSTSUPERSCRIPT 4 italic_m - 1 end_POSTSUPERSCRIPT ( 4 - ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ) ,
a2m(2H)βH2msuperscriptsubscript𝑎2𝑚2𝐻superscriptsubscript𝛽𝐻2𝑚\displaystyle a_{\mathbb{H}}^{2m}\cdot(-2H)\beta_{H}^{2m}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT ⋅ ( - 2 italic_H ) italic_β start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT=24m1(1+σ1+σ2+σ3),absentsuperscript24𝑚11subscript𝜎1subscript𝜎2subscript𝜎3\displaystyle=2^{4m-1}(1+\sigma_{1}+\sigma_{2}+\sigma_{3}-\mathbb{H}),= 2 start_POSTSUPERSCRIPT 4 italic_m - 1 end_POSTSUPERSCRIPT ( 1 + italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - blackboard_H ) ,

and adding these yields the first; the second is similar. Hence if we define

p(n)={2n,neven,2n+1,nodd,𝑝𝑛cases2𝑛𝑛even2𝑛1𝑛oddp(n)=\begin{cases}2n,&n\text{ even},\\2n+1,&n\text{ odd},\end{cases}italic_p ( italic_n ) = { start_ROW start_CELL 2 italic_n , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL 2 italic_n + 1 , end_CELL start_CELL italic_n odd , end_CELL end_ROW

then there are t4subscript𝑡4t_{4-\mathbb{H}}italic_t start_POSTSUBSCRIPT 4 - blackboard_H end_POSTSUBSCRIPT-elements

u2p(n)π2p(n)(4)Q8C(an+1)subscript𝑢superscript2𝑝𝑛superscriptsubscript𝜋superscript2𝑝𝑛4subscript𝑄8𝐶superscriptsubscript𝑎𝑛1u_{2^{p(n)}\mathbb{H}}\in\pi_{2^{p(n)}(4-\mathbb{H})}^{Q_{8}}C(a_{\mathbb{H}}^%{n+1})italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT blackboard_H end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT ( 4 - blackboard_H ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT )

for n0𝑛0n\geq 0italic_n ≥ 0, satisfying

reseQ8((u2p(n)k))={kj4n+3,neven,k4j4n+3,noddsubscriptsuperscriptressubscript𝑄8𝑒superscriptsubscript𝑢superscript2𝑝𝑛𝑘cases𝑘subscript𝑗4𝑛3𝑛even𝑘4subscript𝑗4𝑛3𝑛odd\operatorname{res}^{Q_{8}}_{e}(\partial(u_{2^{p(n)}}^{k}))=\begin{cases}k\cdotj%_{4n+3},&n\text{ even},\\k\cdot 4j_{4n+3},&n\text{ odd}\end{cases}roman_res start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_u start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ) = { start_ROW start_CELL italic_k ⋅ italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL italic_k ⋅ 4 italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT , end_CELL start_CELL italic_n odd end_CELL end_ROW

for k𝑘k\in\mathbb{Z}italic_k ∈ blackboard_Z. By identifying S(n)𝑆𝑛S(n\mathbb{H})italic_S ( italic_n blackboard_H ) as a (4n1)4𝑛1(4n-1)( 4 italic_n - 1 )-skeleton of EQ8𝐸subscript𝑄8EQ_{8}italic_E italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, this implies that if R𝑅Ritalic_R is a Q8subscript𝑄8Q_{8}italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-ring spectrum then in the hom*otopy fixed point spectral sequence

E2=H(Q8;πeR[u±1,uσ1±1,uσ2±1,uσ3±1])πRhsubscript𝐸2superscript𝐻subscript𝑄8superscriptsubscript𝜋𝑒𝑅superscriptsubscript𝑢plus-or-minus1superscriptsubscript𝑢subscript𝜎1plus-or-minus1superscriptsubscript𝑢subscript𝜎2plus-or-minus1superscriptsubscript𝑢subscript𝜎3plus-or-minus1subscript𝜋superscriptsubscript𝑅E_{2}=H^{\ast}(Q_{8};\pi_{\ast}^{e}R[u_{\mathbb{H}}^{\pm 1},u_{\sigma_{1}}^{%\pm 1},u_{\sigma_{2}}^{\pm 1},u_{\sigma_{3}}^{\pm 1}])\Rightarrow\pi_{\star}R_%{h}^{\wedge}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_R [ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_u start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_u start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_u start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] ) ⇒ italic_π start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∧ end_POSTSUPERSCRIPT

there are differentials

d4(n+1)(u2p(n))={j4n+3an+1u(n+1)u2p(n),neven,4j4n+3an+1u(n+1)u2p(n),noddsubscript𝑑4𝑛1superscriptsubscript𝑢superscript2𝑝𝑛casessubscript𝑗4𝑛3superscriptsubscript𝑎𝑛1superscriptsubscript𝑢𝑛1superscriptsubscript𝑢superscript2𝑝𝑛𝑛even4subscript𝑗4𝑛3superscriptsubscript𝑎𝑛1superscriptsubscript𝑢𝑛1superscriptsubscript𝑢superscript2𝑝𝑛𝑛oddd_{4(n+1)}(u_{\mathbb{H}}^{2^{p(n)}})=\begin{cases}j_{4n+3}\cdot a_{\mathbb{H}%}^{n+1}u_{\mathbb{H}}^{-(n+1)}\cdot u_{\mathbb{H}}^{2^{p(n)}},&n\text{ even},%\\4j_{4n+3}\cdot a_{\mathbb{H}}^{n+1}u_{\mathbb{H}}^{-(n+1)}\cdot u_{\mathbb{H}}%^{2^{p(n)}},&n\text{ odd}\end{cases}italic_d start_POSTSUBSCRIPT 4 ( italic_n + 1 ) end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) = { start_ROW start_CELL italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT ⋅ italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( italic_n + 1 ) end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n even , end_CELL end_ROW start_ROW start_CELL 4 italic_j start_POSTSUBSCRIPT 4 italic_n + 3 end_POSTSUBSCRIPT ⋅ italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( italic_n + 1 ) end_POSTSUPERSCRIPT ⋅ italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT italic_p ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , end_CELL start_CELL italic_n odd end_CELL end_ROW

for n0𝑛0n\geq 0italic_n ≥ 0, where asubscript𝑎a_{\mathbb{H}}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT is detected by the generator of H4(Q8;π4eSQ8)/(8)superscript𝐻4subscript𝑄8superscriptsubscript𝜋4𝑒subscript𝑆subscript𝑄88H^{4}(Q_{8};\pi_{4-\mathbb{H}}^{e}S_{Q_{8}})\cong\mathbb{Z}/(8)italic_H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ; italic_π start_POSTSUBSCRIPT 4 - blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ≅ blackboard_Z / ( 8 ). In other words,

d4(u)=νa,d4(u2)=2νau,d4(u4)=4νau3,formulae-sequencesubscript𝑑4subscript𝑢𝜈subscript𝑎formulae-sequencesubscript𝑑4superscriptsubscript𝑢22𝜈subscript𝑎subscript𝑢subscript𝑑4superscriptsubscript𝑢44𝜈subscript𝑎superscriptsubscript𝑢3\displaystyle d_{4}(u_{\mathbb{H}})=\nu a_{\mathbb{H}},\quad d_{4}(u_{\mathbb{%H}}^{2})=2\nu a_{\mathbb{H}}u_{\mathbb{H}},\quad d_{4}(u_{\mathbb{H}}^{4})=4%\nu a_{\mathbb{H}}u_{\mathbb{H}}^{3},italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT ) = italic_ν italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = 2 italic_ν italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) = 4 italic_ν italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ,
d8(u8)=4σa2u6,subscript𝑑8superscriptsubscript𝑢84𝜎superscriptsubscript𝑎2superscriptsubscript𝑢6\displaystyle d_{8}(u_{\mathbb{H}}^{8})=4\sigma a_{\mathbb{H}}^{2}u_{\mathbb{H%}}^{6},italic_d start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT ) = 4 italic_σ italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ,
d12(u16)=j11a3u13,d12(u32)=2j11a3u29,d12(u64)=4j11a3u61,formulae-sequencesubscript𝑑12superscriptsubscript𝑢16subscript𝑗11superscriptsubscript𝑎3superscriptsubscript𝑢13formulae-sequencesubscript𝑑12superscriptsubscript𝑢322subscript𝑗11superscriptsubscript𝑎3superscriptsubscript𝑢29subscript𝑑12superscriptsubscript𝑢644subscript𝑗11superscriptsubscript𝑎3superscriptsubscript𝑢61\displaystyle d_{12}(u_{\mathbb{H}}^{16})=j_{11}a_{\mathbb{H}}^{3}u_{\mathbb{H%}}^{13},\quad d_{12}(u_{\mathbb{H}}^{32})=2j_{11}a_{\mathbb{H}}^{3}u_{\mathbb{%H}}^{29},\quad d_{12}(u_{\mathbb{H}}^{64})=4j_{11}a_{\mathbb{H}}^{3}u_{\mathbb%{H}}^{61},italic_d start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT ) = italic_j start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT , italic_d start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 32 end_POSTSUPERSCRIPT ) = 2 italic_j start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT , italic_d start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 64 end_POSTSUPERSCRIPT ) = 4 italic_j start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 61 end_POSTSUPERSCRIPT ,
d16(u128)=4j15a4u124,subscript𝑑16superscriptsubscript𝑢1284subscript𝑗15superscriptsubscript𝑎4superscriptsubscript𝑢124\displaystyle d_{16}(u_{\mathbb{H}}^{128})=4j_{15}a_{\mathbb{H}}^{4}u_{\mathbb%{H}}^{124},italic_d start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 128 end_POSTSUPERSCRIPT ) = 4 italic_j start_POSTSUBSCRIPT 15 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 124 end_POSTSUPERSCRIPT ,

and so forth, up to orientation of ν𝜈\nuitalic_ν.

6.7. Example: the binary octahedral group

We give a larger symplectic example. Let 2OSp(1)2𝑂𝑆𝑝12O\subset Sp(1)2 italic_O ⊂ italic_S italic_p ( 1 ) denote the binary octahedral group, of order 48484848. This group is of interest to chromatic hom*otopy theorists as the maximal subgroup G48𝔾2subscript𝐺48subscript𝔾2G_{48}\subset\mathbb{G}_{2}italic_G start_POSTSUBSCRIPT 48 end_POSTSUBSCRIPT ⊂ blackboard_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of the extended Morava stabilizer group associated to the Honda formal group law at the prime 2222 and height 2222. Consulting [Dok] we find that 2O2𝑂2O2 italic_O has character table

14A34B28A68B111111111ρ211111111ρ320122010ρ420102212ρ520102212ρ631013101ρ731013101ρ840104010,missing-subexpression14𝐴34𝐵28𝐴68𝐵missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression111111111subscript𝜌211111111subscript𝜌320122010subscript𝜌420102212subscript𝜌520102212subscript𝜌631013101subscript𝜌731013101subscript𝜌840104010\begin{array}[]{c|cccccccc}&1&4A&3&4B&2&8A&6&8B\\\hline\cr 1&1&1&1&1&1&1&1&1\\\rho_{2}&1&-1&1&1&1&-1&1&-1\\\rho_{3}&2&0&-1&2&2&0&-1&0\\\rho_{4}&2&0&-1&0&-2&-\sqrt{2}&1&\sqrt{2}\\\rho_{5}&2&0&-1&0&-2&\sqrt{2}&1&-\sqrt{2}\\\rho_{6}&3&1&0&-1&3&-1&0&-1\\\rho_{7}&3&-1&0&-1&3&1&0&1\\\rho_{8}&4&0&1&0&-4&0&-1&0\end{array},start_ARRAY start_ROW start_CELL end_CELL start_CELL 1 end_CELL start_CELL 4 italic_A end_CELL start_CELL 3 end_CELL start_CELL 4 italic_B end_CELL start_CELL 2 end_CELL start_CELL 8 italic_A end_CELL start_CELL 6 end_CELL start_CELL 8 italic_B end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 1 end_CELL start_CELL - 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL - 1 end_CELL start_CELL 1 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL 2 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_CELL start_CELL 2 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL - 2 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL start_CELL 1 end_CELL start_CELL square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_CELL start_CELL 2 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL - 2 end_CELL start_CELL square-root start_ARG 2 end_ARG end_CELL start_CELL 1 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_CELL start_CELL 3 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 3 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT end_CELL start_CELL 3 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 3 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_CELL start_CELL 4 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL - 4 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ,

where ρ4,ρ5,ρ8subscript𝜌4subscript𝜌5subscript𝜌8\rho_{4},\rho_{5},\rho_{8}italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT are symplectic and the rest are orthogonal.

The tautological representation \mathbb{H}blackboard_H of 2OSp(1)SU(2)2𝑂𝑆𝑝1𝑆𝑈22O\subset Sp(1)\cong SU(2)2 italic_O ⊂ italic_S italic_p ( 1 ) ≅ italic_S italic_U ( 2 ) can be identified with ρ4subscript𝜌4\rho_{4}italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, with Euler class eρ4=2ρ4subscript𝑒subscript𝜌42subscript𝜌4e_{\rho_{4}}=2-\rho_{4}italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 2 - italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. The element α=1+ρ2ρ3+ρ4+ρ5ρ8RU(2O)𝛼1subscript𝜌2subscript𝜌3subscript𝜌4subscript𝜌5subscript𝜌8𝑅𝑈2𝑂\alpha=1+\rho_{2}-\rho_{3}+\rho_{4}+\rho_{5}-\rho_{8}\in RU(2O)italic_α = 1 + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ∈ italic_R italic_U ( 2 italic_O ) satisfies eρ4α=αsubscript𝑒subscript𝜌4𝛼𝛼e_{\rho_{4}}\cdot\alpha=\alphaitalic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⋅ italic_α = italic_α, and as E2O=colimnS(n)𝐸2𝑂subscriptcolim𝑛𝑆𝑛E2O=\operatorname*{colim}_{n\rightarrow\infty}S(n\mathbb{H})italic_E 2 italic_O = roman_colim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT italic_S ( italic_n blackboard_H ) this produces a complex tαsubscript𝑡𝛼t_{\alpha}italic_t start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT-element in παF(E2O+,S2O)subscript𝜋𝛼𝐹𝐸2subscript𝑂subscript𝑆2𝑂\pi_{\alpha}F(E2O_{+},S_{2O})italic_π start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_F ( italic_E 2 italic_O start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 2 italic_O end_POSTSUBSCRIPT ).

Because \mathbb{H}blackboard_H is real 4444-dimensional quaternionic, as with G=Q8𝐺subscript𝑄8G=Q_{8}italic_G = italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT we can compute

π2mKO2Osubscript𝜋2𝑚𝐾subscript𝑂2𝑂\displaystyle\pi_{2m\mathbb{H}}KO_{2O}italic_π start_POSTSUBSCRIPT 2 italic_m blackboard_H end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT 2 italic_O end_POSTSUBSCRIPT={1,ρ2,ρ3,2ρ4,2ρ5,ρ6,ρ7,2ρ8}β2mabsent1subscript𝜌2subscript𝜌32subscript𝜌42subscript𝜌5subscript𝜌6subscript𝜌72subscript𝜌8superscriptsubscript𝛽2𝑚\displaystyle=\mathbb{Z}\{1,\rho_{2},\rho_{3},2\rho_{4},2\rho_{5},\rho_{6},%\rho_{7},2\rho_{8}\}\beta_{\mathbb{H}}^{2m}= blackboard_Z { 1 , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT } italic_β start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT
π(2m+1)KO2Osubscript𝜋2𝑚1𝐾subscript𝑂2𝑂\displaystyle\pi_{(2m+1)\mathbb{H}}KO_{2O}italic_π start_POSTSUBSCRIPT ( 2 italic_m + 1 ) blackboard_H end_POSTSUBSCRIPT italic_K italic_O start_POSTSUBSCRIPT 2 italic_O end_POSTSUBSCRIPT={2,2ρ2,2ρ3,ρ4,ρ5,2ρ6,2ρ7,ρ8}β2m+1,absent22subscript𝜌22subscript𝜌3subscript𝜌4subscript𝜌52subscript𝜌62subscript𝜌7subscript𝜌8superscriptsubscript𝛽2𝑚1\displaystyle=\mathbb{Z}\{2,2\rho_{2},2\rho_{3},\rho_{4},\rho_{5},2\rho_{6},2%\rho_{7},\rho_{8}\}\beta_{\mathbb{H}}^{2m+1},= blackboard_Z { 2 , 2 italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT , 2 italic_ρ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT } italic_β start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m + 1 end_POSTSUPERSCRIPT ,

with the action of asubscript𝑎a_{\mathbb{H}}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT determined by aβ=eρ4=2ρ4subscript𝑎subscript𝛽subscript𝑒subscript𝜌42subscript𝜌4a_{\mathbb{H}}\beta_{\mathbb{H}}=e_{\rho_{4}}=2-\rho_{4}italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 2 - italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. Hence for example

48(4)=a2(648ρ28ρ3+172ρ472ρ516ρ6+8ρ762ρ8)β2,484superscriptsubscript𝑎2648subscript𝜌28subscript𝜌3172subscript𝜌472subscript𝜌516subscript𝜌68subscript𝜌762subscript𝜌8superscriptsubscript𝛽248(4-\mathbb{H})=a_{\mathbb{H}}^{2}\cdot(64-8\rho_{2}-8\rho_{3}+17\cdot 2\rho_%{4}-7\cdot 2\rho_{5}-16\rho_{6}+8\rho_{7}-6\cdot 2\rho_{8})\beta_{\mathbb{H}}^%{2},48 ( 4 - blackboard_H ) = italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ ( 64 - 8 italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 8 italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 17 ⋅ 2 italic_ρ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 7 ⋅ 2 italic_ρ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 16 italic_ρ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 8 italic_ρ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT - 6 ⋅ 2 italic_ρ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

yielding an invertible class tπ48(4)2OC(a2)𝑡superscriptsubscript𝜋4842𝑂𝐶superscriptsubscript𝑎2t\in\pi_{48(4-\mathbb{H})}^{2O}C(a_{\mathbb{H}}^{2})italic_t ∈ italic_π start_POSTSUBSCRIPT 48 ( 4 - blackboard_H ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_O end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) satisfying rese2O((t))=±8σπ7Ssubscriptsuperscriptres2𝑂𝑒𝑡plus-or-minus8𝜎subscript𝜋7𝑆\operatorname{res}^{2O}_{e}(\partial(t))=\pm 8\sigma\in\pi_{7}Sroman_res start_POSTSUPERSCRIPT 2 italic_O end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_t ) ) = ± 8 italic_σ ∈ italic_π start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_S. If for example u8π8(4)Q8C(a2)subscript𝑢8superscriptsubscript𝜋84subscript𝑄8𝐶superscriptsubscript𝑎2u_{8\mathbb{H}}\in\pi_{8(4-\mathbb{H})}^{Q_{8}}C(a_{\mathbb{H}}^{2})italic_u start_POSTSUBSCRIPT 8 blackboard_H end_POSTSUBSCRIPT ∈ italic_π start_POSTSUBSCRIPT 8 ( 4 - blackboard_H ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is as in Subsection6.6, then resQ82O(t)u86subscriptsuperscriptres2𝑂subscript𝑄8𝑡superscriptsubscript𝑢86\operatorname{res}^{2O}_{Q_{8}}(t)\neq u_{8\mathbb{H}}^{6}roman_res start_POSTSUPERSCRIPT 2 italic_O end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) ≠ italic_u start_POSTSUBSCRIPT 8 blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT; instead ϵ=resQ82O(t)u86π0Q8C(a2)×italic-ϵsubscriptsuperscriptres2𝑂subscript𝑄8𝑡superscriptsubscript𝑢86superscriptsubscript𝜋0subscript𝑄8𝐶superscriptsuperscriptsubscript𝑎2\epsilon=\operatorname{res}^{2O}_{Q_{8}}(t)\cdot u_{8\mathbb{H}}^{-6}\in\pi_{0%}^{Q_{8}}C(a_{\mathbb{H}}^{2})^{\times}italic_ϵ = roman_res start_POSTSUPERSCRIPT 2 italic_O end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) ⋅ italic_u start_POSTSUBSCRIPT 8 blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT ∈ italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_C ( italic_a start_POSTSUBSCRIPT blackboard_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT is a unit satisfying reseQ8((ϵ))=±24σsubscriptsuperscriptressubscript𝑄8𝑒italic-ϵplus-or-minus24𝜎\operatorname{res}^{Q_{8}}_{e}(\partial(\epsilon))=\pm 24\sigmaroman_res start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( ∂ ( italic_ϵ ) ) = ± 24 italic_σ.

References

  • [Ada62]J.F. Adams.Vector fields on spheres.Ann. of Math. (2), 75:603–632, 1962.
  • [AI82]Shôrô Araki and Kouyemon Iriye.Equivariant stable hom*otopy groups of spheres with involutions. I.Osaka Math. J., 19(1):1–55, 1982.
  • [Ara79]Shoro Araki.Forgetful spectral sequences.Osaka J. Math., 16:173–199, 1979.
  • [AT69]M.F. Atiyah and D.O. Tall.Group representations, λ𝜆\lambdaitalic_λ-rings and the J𝐽Jitalic_J-hom*omorphism.Topology, 8:253–297, 1969.
  • [Bal22]William Balderrama.Total power operations in spectral sequences.arXiv e-prints, page arXiv:2205.07409, May 2022.
  • [BMMS86]R.R. Bruner, J.P. May, J.E. McClure, and M.Steinberger.Hsubscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT Ring Spectra and Their Applications.Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1986.
  • [Bre67]GlenE. Bredon.Equivariant stable stems.Bull. Amer. Math. Soc., 73:269–273, 1967.
  • [Bre68]G.E. Bredon.Equivariant hom*otopy.Proc. Conf. Transform. Groups, New Orleans 1967, 281-292(1968)., 1968.
  • [BS20]Mark Behrens and Jay Shah.C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant stable hom*otopy from real motivic stablehom*otopy.Ann. K-Theory, 5(3):411–464, 2020.
  • [Cra80]M.C. Crabb.𝐙/2𝐙2\mathbf{Z}/2bold_Z / 2-hom*otopy theory, volume44 of LondonMathematical Society Lecture Note Series.Cambridge University Press, Cambridge-New York, 1980.
  • [Dok]Tim Dokchitser.GroupNames.https://people.maths.bris.ac.uk/~matyd/GroupNames/.
  • [Fre03]Christopher French.The equivariant J𝐽Jitalic_J-hom*omorphism.hom*ology hom*otopy Appl., 5(1):161–212, 2003.
  • [Fuj74]Kensô Fujii.On the KO𝐾𝑂KOitalic_K italic_O-ring of S4n+3/Hmsuperscript𝑆4𝑛3subscript𝐻𝑚S^{4n+3}/H_{m}italic_S start_POSTSUPERSCRIPT 4 italic_n + 3 end_POSTSUPERSCRIPT / italic_H start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.Hiroshima Math. J., 4:459–475, 1974.
  • [GM95]J.P.C. Greenlees and J.P. May.Generalized Tate cohom*ology.Mem. Amer. Math. Soc., 113(543):viii+178, 1995.
  • [HK01]PoHu and Igor Kriz.Real-oriented hom*otopy theory and an analogue of theAdams-Novikov spectral sequence.Topology, 40(2):317–399, 2001.
  • [Jam58]I.M. James.Cross-sections of Stiefel manifolds.Proc. Lond. Math. Soc. (3), 8:536–547, 1958.
  • [Kar02]Max Karoubi.Equivariant K-theory of real vector spaces and real projectivespaces.Topology Appl., 122(3):531–546, 2002.
  • [KS77]Teiichi Kobayashi and Masahiro Sugawara.On stable hom*otopy types of stunted lens spaces. II.Hiroshima Math. J., 7:689–705, 1977.
  • [Lan68]PeterS. Landweber.Conjugations on complex manifolds and equivariant hom*otopy of MU𝑀𝑈MUitalic_M italic_U.Bull. Amer. Math. Soc., 74:271–274, 1968.
  • [Lö78]Peter Löffler.Equivariant framability of involutions on hom*otopy spheres.Manuscripta Math., 23(2):161–171, 1977/78.
  • [Mah75]Norreddine Mahammed.K-theorie des formes spheriques.PhD thesis, Université des sciences et technologies de Lille,1975.https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1975/50376-1975-117.pdf.
  • [McC83]JamesE. McClure.On the equivariant J-groups. I.Math. Z., 183:229–253, 1983.
  • [Min83]Haruo Minami.On equivariant J𝐽Jitalic_J-hom*omorphism for involutions.Osaka Math. J., 20(1):109–122, 1983.
  • [MNN17]Akhil Mathew, Niko Naumann, and Justin Noel.Nilpotence and descent in equivariant stable hom*otopy theory.Advances in Mathematics, 305:994–1084, 2017.
  • [MNN19]Akhil Mathew, Niko Naumann, and Justin Noel.Derived induction and restriction theory.Geometry & Topology, 23(2):541 – 636, 2019.
  • [Nis73]G.Nishida.The nilpotency of elements of the stable hom*otopy groups of spheres.J. Math. Soc. Japan, 25:705–729, 1973.
  • [Oko82]Christian Okonek.Der Conner-Floyd-Isomorphismus für Abelsche Gruppen.Math. Z., 179:201–212, 1982.
  • [Sch18]Stefan Schwede.Global hom*otopy theory, volume34 of New MathematicalMonographs.Cambridge University Press, Cambridge, 2018.
  • [Seg68]Graeme Segal.Equivariant K-theory.Publ. Math., Inst. Hautes Étud. Sci., 34:129–151, 1968.
  • [Seg71]G.B. Segal.Equivariant stable hom*otopy theory.In Actes du Congrès International des Mathématiciens(Nice, 1970), Tome 2, pages 59–63. Gauthier-Villars Éditeur, Paris,1971.
  • [Sin01]DevP. Sinha.Computations of complex equivariant bordism rings.Am. J. Math., 123(4):577–605, 2001.
  • [Str00]N.P. Strickland.K(n)𝐾𝑛K(n)italic_K ( italic_n )-local duality for finite groups and groupoids.Topology, 39(4):733–772, 2000.
  • [tD70]Tammo tom Dieck.Bordism of G𝐺Gitalic_G-manifolds and integrality theorems.Topology, 9:345–358, 1970.
  • [tD79]Tammo tom Dieck.Transformation Groups and Representation Theory.Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1979.
  • [tDP78]Tammo tom Dieck and Ted Petrie.Geometric modules over the Burnside ring.Invent. Math., 47:273–287, 1978.
  • [Tor82]J.Tornehave.Equivariant maps of spheres with conjugate orthogonal actions.In Current trends in algebraic topology, Part 2 (London,Ont., 1981), volume2 of CMS Conf. Proc., pages 275–301. Amer.Math. Soc., Providence, RI, 1982.
  • [Whi42]GeorgeW. Whitehead.On the hom*otopy groups of spheres and rotation groups.Ann. Math. (2), 43:634–640, 1942.
Equivalences of the form Σ^𝑉⁢𝑋≃Σ^𝑊⁢𝑋 in equivariant stable hom*otopy theory (2024)
Top Articles
30+ Cozy Vegetarian Soup Recipes
Turmeric Tea Mix Recipe For Weight Loss - Homemade/DIY (Golden) Turmeric Tea Mix
Spasa Parish
Rentals for rent in Maastricht
159R Bus Schedule Pdf
Sallisaw Bin Store
Black Adam Showtimes Near Maya Cinemas Delano
Espn Transfer Portal Basketball
Pollen Levels Richmond
11 Best Sites Like The Chive For Funny Pictures and Memes
Things to do in Wichita Falls on weekends 12-15 September
Craigslist Pets Huntsville Alabama
Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
What's the Difference Between Halal and Haram Meat & Food?
R/Skinwalker
Rugged Gentleman Barber Shop Martinsburg Wv
Jennifer Lenzini Leaving Ktiv
Ems Isd Skyward Family Access
Elektrische Arbeit W (Kilowattstunden kWh Strompreis Berechnen Berechnung)
Omni Id Portal Waconia
Kellifans.com
Banned in NYC: Airbnb One Year Later
Four-Legged Friday: Meet Tuscaloosa's Adoptable All-Stars Cub & Pickle
Model Center Jasmin
Ice Dodo Unblocked 76
Is Slatt Offensive
Labcorp Locations Near Me
Storm Prediction Center Convective Outlook
Experience the Convenience of Po Box 790010 St Louis Mo
Fungal Symbiote Terraria
modelo julia - PLAYBOARD
Poker News Views Gossip
Abby's Caribbean Cafe
Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
Tri-State Dog Racing Results
Navy Qrs Supervisor Answers
Trade Chart Dave Richard
Lincoln Financial Field Section 110
Free Stuff Craigslist Roanoke Va
Stellaris Resolution
Wi Dept Of Regulation & Licensing
Pick N Pull Near Me [Locator Map + Guide + FAQ]
Crystal Westbrooks Nipple
Ice Hockey Dboard
Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
Infinity Pool Showtimes Near Maya Cinemas Bakersfield
Dermpathdiagnostics Com Pay Invoice
How To Use Price Chopper Points At Quiktrip
Maria Butina Bikini
Busted Newspaper Zapata Tx
Latest Posts
Article information

Author: Eusebia Nader

Last Updated:

Views: 5829

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Eusebia Nader

Birthday: 1994-11-11

Address: Apt. 721 977 Ebert Meadows, Jereville, GA 73618-6603

Phone: +2316203969400

Job: International Farming Consultant

Hobby: Reading, Photography, Shooting, Singing, Magic, Kayaking, Mushroom hunting

Introduction: My name is Eusebia Nader, I am a encouraging, brainy, lively, nice, famous, healthy, clever person who loves writing and wants to share my knowledge and understanding with you.